Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Defective TiO2 Nanotube Arrays for Efficient PhotoelectrochemicalDegradation of Organic Pollutants
Manel Machreki, Takwa Chouki, Georgi Tyuliev, Dušan Žigon, Bunsho Ohtani, Alexandre Loukanov, Plamen Stefanov, Saim Emin, 2023, izvirni znanstveni članek

Opis: Oxygen vacancies (OVs) are one of the most critical factors that enhance the electrical and catalytic characteristics of metal oxide-based photo-electrodes. In this work, a simple procedure was applied to prepare reduced TiO 2 nanotube arrays (NTAs) (TiO 2−x) via a one-step reduction method using NaBH 4. A series of characterization techniques were used to study the structural, optical, and electronic properties of TiO 2−x NTAs. X-ray photoelectron spectroscopy confirmed the presence of defects in TiO 2−x NTAs. Photoacoustic measurements were used to estimate the electron-trap density in the NTAs. Photoelectrochemical studies show that the photocurrent density of TiO 2−x NTAs was nearly 3 times higher than that of pristine TiO 2. It was found that increasing OVs in TiO 2 affects the surface recombination centers, enhances electrical conductivity, and improves charge transport. For the first time, a TiO 2−x photoanode was used in the photo-electrochemical (PEC) degradation of a textile dye (basic blue 41, B41) and ibuprofen (IBF) pharmaceutical using in situ generated reactive chlorine species (RCS). Liquid chromatography coupled with mass spectrometry was used to study the mechanisms for the degradation of B41 and IBF. Phytotoxicity tests of B41 and IBF solutions were performed using Lepidium sativum L. to evaluate the potential acute toxicity before and after the PEC treatment. The present work provides efficient PEC degradation of the B41 dye and IBF in the presence of RCS without generating harmful products.
Ključne besede: TiO2 Nanotube Arrays, PhotoelectrochemicalDegradation of Organic Pollutants
Objavljeno v RUNG: 12.06.2023; Ogledov: 361; Prenosov: 3
.pdf Celotno besedilo (4,22 MB)
Gradivo ima več datotek! Več...

Reduced TiO2 nanotube arrays for photoelectrochemical degradation of pharmaceutical
Manel Machreki, Takwa Chouki, Georgi Tyuliev, Dušan Žigon, Bunsho Ohtani, Alexandre Loukanov, Plamen Stefanov, Saim Emin, 2022, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: TiO2, nanotube arrays, photoelectrochemical degradation, pharmaceuticals
Objavljeno v RUNG: 10.02.2023; Ogledov: 481; Prenosov: 0
Gradivo ima več datotek! Več...

Highly active iron phosphide catalysts for selective electrochemical nitrate reduction to ammonia
Takwa Chouki, Manel Machreki, Iwona Rutkowska, Beata Rytelewska, Pawel J. Kulesza, Georgi Tyuliev, Moussab Harb, Luis Miguel Azofra, Saim Emin, 2023, izvirni znanstveni članek

Opis: The electrochemical reduction reaction of the nitrate ion (NO3−), a widespread water pollutant, to valuable ammonia (NH3) is a promising approach for environmental remediation and green energy conservation. The development of high-performance electrocatalysts to selectively reduce NO3− wastes into value-added NH3 will open up a different route of NO3− treatment, and impose both environmental and economic impacts on sustainable NH3 synthesis. Transition metal phosphides represent one of the most promising earth-abundant catalysts with impressive electrocatalytic activities. Herein, we report for the first time the electrocatalytic reduction of NO3− using different phases of iron phosphide. Particularly, FeP and Fe2P phases were successfully demonstrated as efficient catalysts for NH3 generation. Detection of the in-situ formed product was achieved using electrooxidation of NH3 to nitrogen (N2) on a Pt electrode. The Fe2P catalyst exhibits the highest Faradaic efficiency (96 %) for NH3 generation with a yield (0.25 mmol h−1 cm-−2 or 2.10 mg h−1 cm−2) at − 0.55 V vs. reversible hydrogen electrode (RHE). The recycling tests confirmed that Fe2P and FeP catalysts exhibit excellent stability during the NO3− reduction at − 0.37 V vs. RHE. To get relevant information about the reaction mechanisms and the fundamental origins behind the better performance of Fe2P, density functional theory (DFT) calculations were performed. These results indicate that the Fe2P phase exhibits excellent performance to be deployed as an efficient noble metal-free catalyst for NH3 generation.
Ključne besede: Iron phosphide, Electrocatalysts, Nitrates reduction Ammonia, DFT calculations
Objavljeno v RUNG: 02.02.2023; Ogledov: 606; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.02 sek.
Na vrh