Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 8 / 8
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Emission of volatile organic compounds from residential biomass burning and their rapid chemical transformations
Maximillien Desservettaz, Michael Pikridas, Iasonas Stavroulas, Aikaterini Bougiatioti, Eleni Liakakou, Nikolaos Hatzianastassiou, Jean Sciare, Nikolaos Mihalopoulos, Efstratios Bourtsoukidis, 2023, izvirni znanstveni članek

Opis: Biomass combustion releases a complex array of Volatile Organic Compounds (VOCs) that pose significant challenges to air quality and human health. Although biomass burning has been extensively studied at ecosystem levels, understanding the atmospheric transformation and impact on air quality of emissions in urban environments remains challenging due to complex sources and burning materials. In this study, we investigate the VOC emission rates and atmospheric chemical processing of predominantly wood burning emissions in a small urban centre in Greece. Ioannina is situated in a valley within the Dinaric Alps and experiences intense atmospheric pollution accumulation during winter due to its topography and high wood burning activity. During pollution event days, the ambient mixing ratios of key VOC species were found to be similar to those reported for major urban centres worldwide. Positive matrix factorisation (PMF) analysis revealed that biomass burning was the dominant emission source (>50 %), representing two thirds of OH reactivity, which indicates a highly reactive atmospheric mixture. Calculated OH reactivity ranges from 5 s−1 to an unprecedented 278 s−1, and averages at 93 ± 66 s−1 at 9 PM, indicating the presence of exceptionally reactive VOCs. The highly pronounced photochemical formation of organic acids coincided with the formation of ozone, highlighting the significance of secondary formation of pollutants in poorly ventilated urban areas. Our findings underscore the pressing need to transition from wood burning to environmentally friendly sources of energy in poorly ventilated urban areas, in order to improve air quality and safeguard public health.
Ključne besede: biomass burning, urban air quality, VOCs, emission factors, source apportionment
Objavljeno v RUNG: 13.05.2024; Ogledov: 415; Prenosov: 2
.pdf Celotno besedilo (8,93 MB)

2.
Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece
Eleni Liakakou, Iasonas Stavroulas, Dimitris G. Kaskaoutis, Georgios Grivas, D. Paraskevopoulou, Umesh Chandra Dumka, M. Tsagkaraki, Aikaterini Bougiatioti, K. Oikonomou, J. Sciare, 2020, izvirni znanstveni članek

Opis: This study aims to delineate the characteristics of Black Carbon (BC) in the atmosphere over Athens, Greece, using 4-year (May 2015–April 2019) Aethalometer (AE-33) measurements. The average BC concentration is 1.9 ± 2.5 μg m−3 (ranging from 0.1 to 32.7 μg m−3; hourly values), with a well-defined seasonality from 1.3 ± 1.1 μg m−3 in summer to 3.0 ± 4.0 μg m−3 in winter. Pronounced morning and evening/night peaks are found in the BC concentrations in winter, while during the rest of the seasons, this diurnal cycle appears to flatten out, with the exception of the morning traffic peak. On an annual basis, the biomass-burning fraction (BB%) of BC accounts for 22 ± 12%, while the fossil-fuel combustion (BCff) component (traffic emissions and domestic heating) dominates during summer (83%) and in the morning hours. BCwb exhibits higher contribution in winter (32%), especially during the night hours (39%). BC levels are effectively reduced by precipitation, while they significantly build-up for wind speeds <3 m s−1 and mixing-layer height (MLH) < 500 m. Normalizing the BC diurnal course by the MLH variations on a seasonal basis reveals that the residential wood-burning emissions are mostly responsible for the large BC increase during winter nights, whereas the low BC levels during daytime in the warm season are mainly attributed to dilution into a deeper MLH. BCwb is highly correlated with other BB tracers during winter nights (e.g. levoglucosan, non-sea-salt-K+, m/z 60 fragment), as well as with the fine fraction (PM2.5) OC and EC. The Delta-C, which represents the spectral dependence of BC as the absorption difference between 370 and 880 nm, is analyzed for the first time in Athens. It exhibits a pronounced seasonality with maximum values in winter night-time, and it appears as a valid qualitative marker for wood combustion.
Ključne besede: black carbon, wood burning, source apportionment, mixing layer, biomass burning tracers, Athens
Objavljeno v RUNG: 10.05.2024; Ogledov: 359; Prenosov: 1
URL Povezava na datoteko

3.
A method for quantification of mineral dust in air based on optical absorption of particles concentrated by a virtual impactor and a device performing the said method : SI3783336 (T1), 2024-02-29
Luka Drinovec, Griša Močnik, Iasonas Stavroulas, Spiros Bezantakos, Michael Pikridas, Florin Unga, Jean Sciare, 2024, patent

Opis: The present invention belongs to the field of devices and methods for measurement of particle concentration, more precisely to the field of devices and methods for quantification of particles based on their physical characteristics, especially with the use of optical means. The invention relates to a method for determination of ambient mineral dust concentration based on optical absorption of particles concentrated by a virtual impactor as well as a device performing the said method. The method comprises the following steps:- Sampling air samples with particle size smaller than 1 µm (PM1) and sampling air samples with particle size up to 10 µm;- Concentrating the samples with particle sizes up to 10 µm with a virtual impactor;- Measuring optical absorption of collected samples at least one wavelength from UV to IR spectre, preferably from 370 to 950 nm, most preferably at 370 nm;- Subtracting the absorption of the samples with particle size smaller than 1 µm from the absorption of the sample concentrated by the virtual impactor.
Ključne besede: dust, black carbon, aerosols
Objavljeno v RUNG: 24.04.2024; Ogledov: 1094; Prenosov: 4
URL Povezava na datoteko
Gradivo ima več datotek! Več...

4.
Contribution of black carbon and desert dust to aerosol absorption in the atmosphere of the Eastern Arabian Peninsula
Mohamed M. K. Mahfouz, Gregor Skok, Jean Sciare, Michael Pikridas, M. R. Alfarra, Shamjad Moosakutty, Bálint Alföldy, Matic Ivančič, Martin Rigler, Asta Gregorič, Rok Podlipec, Griša Močnik, 2024, izvirni znanstveni članek

Opis: Discriminating the absorption coefficients of aerosol mineral dust and black carbon (BC) in different aerosol size fractions is a challenge because of BC's large mass absorption cross-section compared to dust. Ambient aerosol wavelength dependent absorption coefficients in supermicron and submicron size fractions were determined with a high time resolution. The measurements were performed simultaneously using identical systems at an urban and a regional background site in Qatar. At each site, measurements were taken by co-located Aethalometers, one with a virtual impactor (VI) and the other with a PM1 cyclone to respectively collect super-micron-enhanced and submicron fractions. The combined measurement of aerosol absorption and scattering coefficients enabled the particles to be classified based on their optical properties' wavelength dependence. The classification reveals the presence of BC internally/externally mixed with different aerosols. Helium ion microscopy images provided information concerning the extent of mineral dust in the submicron fraction. The determination of absorption coefficients during dust storms and non-dust periods was used to establish the absorption Ångström exponent for dust and BC. Non-parametric wind regression, potential source contribution function and back-trajectory analysis reveal major regional sources of desert dust associated with north-westerly winds and a minor local dust contribution. In contrast, major BC sources found locally were associated with south-westerly winds with a smaller contribution made by offshore emissions transported by north-easterly and easterly winds. The use of a pair of Aethalometers with VI and PM1 inlets separates contributions of BC and dust to the aerosol absorption coefficient.
Ključne besede: aerosol absorption, black carbon, mineral dust, desert dust, Arabian Peninsula
Objavljeno v RUNG: 29.02.2024; Ogledov: 827; Prenosov: 6
.pdf Celotno besedilo (18,90 MB)
Gradivo ima več datotek! Več...

5.
6.
The new instrument using a TC–BC (total carbon–black carbon) method for the online measurement of carbonaceous aerosols
Martin Rigler, Luka Drinovec, Gašper Lavrič, Anastasia Vlachou, André S. H. Prévôt, Jean-Luc Jaffrezo, Iasonas Stavroulas, Jean Sciare, Judita Burger, Irena Krajnc, Janja Turšič, Anthony D. A. Hansen, Griša Močnik, 2020, izvirni znanstveni članek

Opis: We present a newly developed total carbon analyzer (TCA08) and a method for online speciation of carbonaceous aerosol with a high time resolution. The total carbon content is determined by flash heating of a sample collected on a quartz-fiber filter with a time base between 20 min and 24 h. The limit of detection is approximately 0.3 µg C, which corresponds to a concentration of 0.3 µg C m−3 at a sample flow rate of 16.7 L min−1 and a 1 h sampling time base. The concentration of particulate equivalent organic carbon (OC) is determined by subtracting black carbon concentration, concurrently measured optically by an Aethalometer®, from the total carbon concentration measured by the TCA08. The combination of the TCA08 and Aethalometer (AE33) is an easy-to-deploy and low-maintenance continuous measurement technique for the high-time-resolution determination of equivalent organic and elemental carbon (EC) in different particulate matter size fractions, which avoids pyrolytic correction and the need for high-purity compressed gases. The performance of this online method relative to the standardized off-line thermo-optical OC–EC method and respective instruments was evaluated during a winter field campaign at an urban background location in Ljubljana, Slovenia. The organic-matter-to-organic-carbon ratio obtained from the comparison with an aerosol chemical speciation monitor (ACSM) was OM/OC=1.8, in the expected range.
Ključne besede: total carbon, aeroosl, black carbon, carbonaceous matter
Objavljeno v RUNG: 17.08.2020; Ogledov: 3210; Prenosov: 77
.pdf Celotno besedilo (226,45 KB)

7.
A new optical-based technique for real-time measurements of mineral dust concentration in PM10 using a virtual impactor
Luka Drinovec, Jean Sciare, Iasonas Stavroulas, Spiros Bezantakos, Michael Pikridas, FLORIN UNGA, Chrysanthos Savvides, Bojana Višnjić, Maja Remškar, Griša Močnik, 2020, izvirni znanstveni članek

Opis: Atmospheric mineral dust influences Earth’s radiative budget, cloud formation, and lifetime; has adverse health effects; and affects air quality through the increase of regulatory PM10 concentrations, making its real-time quantification in the atmosphere of strategic importance. Only few near-real-time techniques can discriminate dust aerosol in PM10 samples and they are based on the dust chemical composition. The online determination of mineral dust using aerosol absorption photometers offers an interesting and competitive alternative but remains a difficult task to achieve. This is particularly challenging when dust is mixed with black carbon, which features a much higher mass absorption cross section. We build on previous work using filter photometers and present here for the first time a highly timeresolved online technique for quantification of mineral dust concentration by coupling a high-flow virtual impactor (VI) sampler that concentrates coarse particles with an aerosol absorption photometer (Aethalometer, model AE33). The absorption of concentrated dust particles is obtained by subtracting the absorption of the submicron (PM1) aerosol fraction from the absorption of the virtual impactor sample (VIPM1 method). This real-time method for detecting desert dust was tested in the field for a period of 2 months (April and May 2016) at a regional background site of Cyprus, in the Eastern Mediterranean. Several intense desert mineral dust events were observed during the field campaign with dust concentration in PM10 up to 45 μgm
Ključne besede: aerosol absorption, mineral dust, on-line detection, air quality
Objavljeno v RUNG: 20.07.2020; Ogledov: 3051; Prenosov: 0
Gradivo ima več datotek! Več...

8.
Iskanje izvedeno v 0.04 sek.
Na vrh