1. Influence of clouds on black carbon direct radiative effect and heating rate over MilanAsta Gregorič, Luca Ferrero, Griša Močnik, S. Cogliati, F. Barnaba, L. Di Liberto, G. P. Gobbi, E. Bolzacchini, 2017, objavljeni povzetek znanstvenega prispevka na konferenci Najdeno v: osebi Ključne besede: black carbon, direct radiative effect, heating rate, clouds Objavljeno: 10.10.2017; Ogledov: 3790; Prenosov: 243
Polno besedilo (135,28 KB) |
2. Experimental determination of black and brown carbon heating rate from mid-latitudes to the Arctic ocean, and related energy gradientLuca Ferrero, Luca Cataldi, Griša Močnik, Asta Gregorič, Piotr Markuszewski, Przemek Makuch, Paulina Pakszys, Tomek Petelski, E. Bolzacchini, Tymon Zielinski, 2019, objavljeni povzetek znanstvenega prispevka na konferenci Najdeno v: osebi Ključne besede: black carbon, heating rate, Arctic Objavljeno: 17.07.2019; Ogledov: 2763; Prenosov: 0
Polno besedilo (6,60 MB) |
3. Experimental dataset - A dual-wavelength photothermal aerosol absorption monitor: design, calibration and performanceAlfred Wiedensohler, Thomas Müller, Celine Pascale, Konstantina Vasilatou, Tobias Bühlmann, Daniel Kalbermatter, Ernest Weingartner, Jannis Röhrbein, Bradley Visser, Luca Ferrero, Kristijan Vidović, Miha Škarabot, Mario Kurtjak, Luka Pirker, Uroš Jagodič, Luka Drinovec, Griša Močnik, zaključena znanstvena zbirka podatkov ali korpus Najdeno v: osebi Ključne besede: photothermal interferometer, aerosol light absorption coefficient Objavljeno: 14.01.2022; Ogledov: 990; Prenosov: 19
Polno besedilo (531,36 MB) Gradivo ima več datotek! Več...
|
4. Multi-wavelength aerosol absorption coefficient measurements: instrument inter-comparison and results of source and source-component modellingPaolo Prati, Ezio Bolzacchini, Marco Cataldi A., Asta Gregorič, Griša Močnik, Mario Massabò, Sara Valentin, Francesca Soldan, Luca Ferrero, Vera Bernardoni, Gianluigi Valli, Roberta Vecchi, 2019, objavljeni povzetek znanstvenega prispevka na konferenci Najdeno v: osebi Ključne besede: aerosol absorption, method intercomparison Objavljeno: 17.07.2019; Ogledov: 2606; Prenosov: 0
Polno besedilo (6,60 MB) |
5. The impact of cloudiness and cloud type on the atmospheric heating rate of black and brown carbon in the Po ValleyNiccolò Losi, Ezio Bolzacchini, Gian Paolo Gobbi, Luca Di Liberto, Luca Ferrero, Asta Gregorič, Griša Močnik, Francesca Barnaba, Sergio Cogliati, Martin Rigler, 2021, izvirni znanstveni članek Opis: We experimentally quantified the impact of cloud fraction and cloud type on the heating rate (HR) of black and brown carbon (HRBC and HRBrC). In particular, we examined in more detail the cloud effect on the HR detected in a previous study (Ferrero et al., 2018). High-time-resolution measurements of the aerosol absorption coefficient at multiple wavelengths were coupled with spectral measurements of the direct, diffuse and surface reflected irradiance and with lidar–ceilometer data during a field campaign in Milan, Po Valley (Italy). The experimental set-up allowed for a direct determination of the total HR (and its speciation: HRBC and HRBrC) in all-sky conditions (from clear-sky conditions to cloudy). The highest total HR values were found in the middle of winter (1.43 ± 0.05 K d−1), and the lowest were in spring (0.54 ± 0.02 K d−1). Overall, the HRBrC accounted for 13.7 ± 0.2 % of the total HR, with the BrC being characterized by an absorption Ångström exponent (AAE) of 3.49 ± 0.01. To investigate the role of clouds, sky conditions were classified in terms of cloudiness (fraction of the sky covered by clouds: oktas) and cloud type (stratus, St; cumulus, Cu; stratocumulus, Sc; altostratus, As; altocumulus, Ac; cirrus, Ci; and cirrocumulus–cirrostratus, Cc–Cs). During the campaign, clear-sky conditions were present 23 % of the time, with the remaining time (77 %) being characterized by cloudy conditions. The average cloudiness was 3.58 ± 0.04 oktas (highest in February at 4.56 ± 0.07 oktas and lowest in November at 2.91 ± 0.06 oktas). St clouds were mostly responsible for overcast conditions (7–8 oktas, frequency of 87 % and 96 %); Sc clouds dominated the intermediate cloudiness conditions (5–6 oktas, frequency of 47 % and 66 %); and the transition from Cc–Cs to Sc determined moderate cloudiness (3–4 oktas); finally, low cloudiness (1–2 oktas) was mostly dominated by Ci and Cu (frequency of 59 % and 40 %, respectively).
HR measurements showed a constant decrease with increasing cloudiness of the atmosphere, enabling us to quantify for the first time the bias (in %) of the aerosol HR introduced by the simplified assumption of clear-sky conditions in radiative-transfer model calculations. Our results showed that the HR of light-absorbing aerosol was ∼ 20 %–30 % lower in low cloudiness (1–2 oktas) and up to 80 % lower in completely overcast conditions (i.e. 7–8 oktas) compared to clear-sky ones. This means that, in the simplified assumption of clear-sky conditions, the HR of light-absorbing aerosol can be largely overestimated (by 50 % in low cloudiness, 1–2 oktas, and up to 500 % in completely overcast conditions, 7–8 oktas).
The impact of different cloud types on the HR was also investigated. Cirrus clouds were found to have a modest impact, decreasing the HRBC and HRBrC by −5 % at most. Cumulus clouds decreased the HRBC and HRBrC by −31 ± 12 % and −26 ± 7 %, respectively; cirrocumulus–cirrostratus clouds decreased the HRBC and HRBrC by −60 ± 8 % and −54 ± 4 %, which was comparable to the impact of altocumulus (−60 ± 6 % and −46 ± 4 %). A higher impact on the HRBC and HRBrC suppression was found for stratocumulus (−63 ± 6 % and −58 ± 4 %, respectively) and altostratus (−78 ± 5 % and −73 ± 4 %, respectively). The highest impact was associated with stratus, suppressing the HRBC and HRBrC by −85 ± 5 % and −83 ± 3 %, respectively. The presence of clouds caused a decrease of both the HRBC and HRBrC (normalized to the absorption coefficient of the respective species) of −11.8 ± 1.2 % and −12.6 ± 1.4 % per okta. This study highlights the need to take into account the role of both cloudiness and different cloud types when estimating the HR caused by both BC and BrC and in turn decrease the uncertainties associated with the quantification of their impact on the climate. Najdeno v: osebi Povzetek najdenega: ...the HR detected in a previous study ( Ferrero et al., 2018). High-time-resolution measurements of the... Ključne besede: black carbon, brown carbon, cloud, atmospheric heating rate, climate change Objavljeno: 29.03.2021; Ogledov: 1575; Prenosov: 0
Polno besedilo (8,61 MB) |
6. Determination of Aethalometer multiple-scattering enhancement parameters and impact on source apportionment during the winter 2017/18 EMEP/ACTRIS/COLOSSAL campaign in MilanAsta Gregorič, Dario Massabo, Griša Močnik, Paolo Prati, Martin Rigler, Luca Santagostini, Ezio Bolzacchini, Alice Corina Forello, Vera Bernardoni, Luca Ferrero, 2021, izvirni znanstveni članek Opis: In the frame of the EMEP/ACTRIS/COLOSSAL campaign in Milan during winter 2018, equivalent black carbon measurements using the Aethalometer 31 (AE31), the Aethalometer 33 (AE33), and a Multi-Angle Absorption Photometer (MAAP) were carried out together with levoglucosan analyses on 12 h resolved PM2.5 samples collected in parallel.
From AE31 and AE33 data, the loading-corrected aerosol attenuation coefficients (bATN) were calculated at seven wavelengths (λ, where λ values are 370, 470, 520, 590, 660, 880, and 950 nm). The aerosol absorption coefficient at 637 nm (babs_MAAP) was determined by MAAP measurements. Furthermore, babs was also measured at four wavelengths (405, 532, 635, 780 nm) on the 12 h resolved PM2.5 samples by a polar photometer (PP_UniMI).
After comparing PP_UniMI and MAAP results, we exploited PP_UniMI data to evaluate the filter multiple-scattering enhancement parameter at different wavelengths for AE31 and AE33. We obtained instrument- and wavelength-dependent multiple-scattering enhancement parameters by linear regression of the Aethalometer bATN against the babs measured by PP_UniMI. We found significant dependence of the multiple-scattering enhancement parameter on filter material, hence on the instrument, with a difference of up to 30 % between the AE31 and the AE33 tapes. The wavelength dependence and day–night variations were small – the difference between the smallest and largest value was up to 6 %.
Data from the different instruments were used as input to the so-called “Aethalometer model” for optical source apportionment, and instrument dependence of the results was investigated. Inconsistencies among the source apportionment were found fixing the AE31 and AE33 multiple-scattering enhancement parameters to their usual values. In contrast, optimised multiple-scattering enhancement parameters led to a 5 % agreement among the approaches.
Also, the component apportionment “MWAA model” (Multi-Wavelength Absorption Analyzer model) was applied to the dataset. It was less sensitive to the instrument and the number of wavelengths, whereas significant differences in the determination of the absorption Ångström exponent for brown carbon were found (up to 22 %). Najdeno v: osebi Ključne besede: black carbon, filter photometer, Aethalometer, source apportionment Objavljeno: 16.04.2021; Ogledov: 1577; Prenosov: 0
Polno besedilo (1,95 MB) |
7. Consistent determination of the heating rate of light-absorbing aerosol using wavelength- and time-dependent Aethalometer multiple-scattering correctionMartin Rigler, Asta Gregorič, Griša Močnik, Dario Massabò, Sara Valentini, Francesca Soldan, Sergio Cogliati, Luca Santagostini, Vera Bernardoni, Luca Ferrero, 2021, izvirni znanstveni članek Opis: Accurate and temporally consistent measurements of light absorbing aerosol (LAA) heating rate (HR) and of its source apportionment (fossil-fuel, FF; biomass-burning, BB) and speciation (black and brown Carbon; BC, BrC) are needed to evaluate LAA short-term climate forcing. For this purpose, wavelength- and time-dependent accurate LAA absorption coefficients are required. HR was experimentally determined and apportioned (sources/species) in the EMEP/ACTRIS/COLOSSAL-2018 winter campaign in Milan (urban-background site). Two Aethalometers (AE31/AE33) were installed together with a MAAP, CPC, OPC, a low volume sampler (PM2.5) and radiation instruments. AE31/AE33 multiple-scattering correction factors (C) were determined using two reference systems for the absorption coefficient: 1) 5-wavelength PP_UniMI with low time resolution (12 h, applied to PM2.5 samples); 2) timely-resolved MAAP data at a single wavelength. Using wavelength- and time-independent C values for the AE31 and AE33 obtained with the same reference device, the total HR showed a consistency (i.e. reproducibility) with average values comparable at 95% probability. However, if different reference devices/approaches are used, i.e. MAAP is chosen as reference instead of a PP_UniMI, the HR can be overestimated by 23-30% factor (by both AE31/AE33). This became more evident focusing on HR apportionment: AE33 data (corrected by a wavelength- and time-independent C) showed higher HRFF (+24±1%) and higher HRBC (+10±1%) than that of AE31. Conversely, HRBB and HRBrC were -28±1% and -29±1% lower for AE33 compared to AE31. These inconsistencies were overcome by introducing a wavelength-dependent Cλ for both AE31 and AE33, or using multi-wavelength apportionment methods, highlighting the need for further studies on the influence of wavelength corrections for HR determination.
Finally, the temporally-resolved determination of C resulted in a diurnal cycle of the HR not statistically different whatever the source- speciation- apportionment used. Najdeno v: osebi Ključne besede: climate change, heating rate, black carbon, light absorbing aerosols Objavljeno: 09.06.2021; Ogledov: 1299; Prenosov: 0
Polno besedilo (2,02 MB) |
8. A dual-wavelength photothermal aerosol absorption monitorKonstantina Vasilatou, Griša Močnik, Ernest Weingartner, Daniel M. Kalbermatter, Bradley Visser, Jannis Röhrbein, Luca Ferrero, Kristijan Vidović, Mario Kurtjak, Miha Škarabot, Luka Pirker, Luka Drinovec, Uroš Jagodič, 2022, izvirni znanstveni članek Opis: There exists a lack of aerosol absorption measurement techniques with low uncertainties and without artefacts. We have developed the two-wavelength Photothermal Aerosol Absorption Monitor (PTAAM-2λ), which measures the aerosol absorption coefficient at 532 and 1064 nm. Here we describe its design, calibration and mode of operation and evaluate its applicability, limits and uncertainties. The 532 nm channel was calibrated with ∼ 1 µmol mol−1 NO2, whereas the 1064 nm channel was calibrated using measured size distribution spectra of nigrosin particles and a Mie calculation. Since the aerosolized nigrosin used for calibration was dry, we determined the imaginary part of the refractive index of nigrosin from the absorbance measurements on solid thin film samples. The obtained refractive index differed considerably from the one determined using aqueous nigrosin solution. PTAAM-2λ has no scattering artefact and features very low uncertainties: 4 % and 6 % for the absorption coefficient at 532 and 1064 nm, respectively, and 9 % for the absorption Ångström exponent. The artefact-free nature of the measurement method allowed us to investigate the artefacts of filter photometers. Both the Aethalometer AE33 and CLAP suffer from cross-sensitivity to scattering – this scattering artefact is most pronounced for particles smaller than 70 nm. We observed a strong dependence of the filter multiple scattering parameter on the particle size in the 100–500 nm range. The results from the winter ambient campaign in Ljubljana showed similar multiple scattering parameter values for ambient aerosols and laboratory experiments. The spectral dependence of this parameter resulted in AE33 reporting the absorption Ångström exponent for different soot samples with values biased 0.23–0.35 higher than the PTAAM-2λ measurement. Photothermal interferometry is a promising method for reference aerosol absorption measurements. Najdeno v: osebi Ključne besede: aerosol absorption, calibration, black carbon Objavljeno: 28.06.2022; Ogledov: 484; Prenosov: 21
Polno besedilo (2,90 MB) Gradivo ima več datotek! Več...
|