1. Investigating the use of secondary organic aerosol as seed particles in simulation chamber experimentsJaqueline F Hamilton, M Rami Alfarra, Kevin P Wyche, Martyn W Ward, Alistair C Lewis, Gordon B McFiggans, Nicholas Good, Paul S Monks, Timo Carr, Iain R White, Ruth M Purvis, 2011, izvirni znanstveni članek Opis: The use of β-caryophyllene secondary organic aerosol particles as seeds for smog chamber simulations has been investigated. A series of experiments were carried out in the Manchester photochemical chamber as part of the Aerosol Coupling in the Earth System (ACES) project to study the effect of seed particles on the formation of secondary organic aerosol (SOA) from limonene photo-oxidation. Rather than use a conventional seed aerosol containing ammonium sulfate or diesel particles, a method was developed to use in-situ chamber generated seed particles from β-caryophyllene photo-oxidation, which were then diluted to a desired mass loading (in this case 4-13 μg m-3). Limonene was then introduced into the chamber and oxidised, with the formation of SOA seen as a growth in the size of oxidised organic seed particles from 150 to 325 nm mean diameter. The effect of the partitioning of limonene oxidation products onto the seed aerosol was assessed using aerosol mass spectrometry during the experiment and the percentage of m/z 44, an indicator of degree of oxidation, increased from around 5 to 8 %. The hygroscopicity of the aerosol also changed, with the growth factor for 200 nm particles increasing from less than 1.05 to 1.25 at 90 % RH. The detailed chemical composition of the limonene SOA could be extracted from the complex β-caryophyllene matrix using two-dimensional gas chromatography (GC× GC) and liquid chromatography coupled to mass spectrometry. High resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) was used to determine exact molecular formulae of the seed and the limonene modified aerosol. The average O:C ratio was seen to increase from 0.32 to 0.37 after limonene oxidation products had condensed onto the organic seed. Najdeno v: osebi Ključne besede: Aerosol, Aerosol formation, Smog chamber Objavljeno: 18.07.2019; Ogledov: 1976; Prenosov: 0
Polno besedilo (1,96 MB) |
2. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudesQ. Zhang, Jose L. Jimenez, M. R. Canagaratna, J. David Allan, H. Coe, I. M. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Katja Džepina, 2007, izvirni znanstveni članek Opis: Organic aerosol (OA) data acquired by the Aerosol Mass Spectrometer (AMS) in 37 field campaigns were deconvolved into hydrocarbon-like OA (HOA) and several types of oxygenated OA (OOA) components. HOA has been linked to primary combustion emissions (mainly from fossil fuel) and other primary sources such as meat cooking. OOA is ubiquitous in various atmospheric environments, on average accounting for 64%, 83% and 95% of the total OA in urban, urban downwind, and rural/remote sites, respectively. A case study analysis of a rural site shows that the OOA concentration is much greater than the advected HOA, indicating that HOA oxidation is not an important source of OOA, and that OOA increases are mainly due to SOA. Most global models lack an explicit representation of SOA which may lead to significant biases in the magnitude, spatial and temporal distributions of OA, and in aerosol hygroscopic properties. Najdeno v: osebi Ključne besede: atmospheric aerosol, secondary organic aerosols, primary organic aerosols, aerodyne aerosol mass spectrometer Objavljeno: 11.04.2021; Ogledov: 1281; Prenosov: 0
Polno besedilo (1,15 MB) |