Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
A European aerosol phenomenology - 9 : light absorption properties of carbonaceous aerosol particles across surface Europe
Jordi Rovira, Marjan Savadkoohi, Gang I. Chen, Griša Močnik, Wenche Aas, Lucas Alados-Arboledas, B. Artíñano, Asta Gregorič, Matic Ivančič, Jesús Yus-Díez, 2024, izvirni znanstveni članek

Opis: Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (bAbs,BC) and BrC (bAbs,BrC) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)). Absorption coefficients showed a clear relationship with station setting decreasing as follows: TR > UB > SUB > RB > M, with exceptions. The contribution of bAbs,BrC to total absorption (bAbs), i.e. %AbsBrC, was lower at traffic sites (11–20 %), exceeding 30 % at some SUB and RB sites. Low AAE values were observed at TR sites, due to the dominance of internal combustion emissions, and at some remote RB/M sites, likely due to the lack of proximity to BrC sources, insufficient secondary processes generating BrC or the effect of photobleaching during transport. Higher bAbs and AAE were observed in Central/Eastern Europe compared to Western/Northern Europe, due to higher coal and biomass burning emissions in the east. Seasonal analysis showed increased bAbs, bAbs,BC, bAbs,BrC in winter, with stronger %AbsBrC, leading to higher AAE. Diel cycles of bAbs,BC peaked during morning and evening rush hours, whereas bAbs,BrC, %AbsBrC, AAE, and AAEBrC peaked at night when emissions from household activities accumulated. Decade-long trends analyses demonstrated a decrease in bAbs, due to reduction of BC emissions, while bAbs,BrC and AAE increased, suggesting a shift in CA composition, with a relative increase in BrC over BC. This study provides a unique dataset to assess the BrC effects on climate and confirms that BrC can contribute significantly to UV–VIS radiation presenting highly variable absorption properties in Europe.
Ključne besede: aerosol absorption, black carbon, brown carbon, climate change, air pollution
Objavljeno v RUNG: 10.12.2024; Ogledov: 1416; Prenosov: 8
.pdf Celotno besedilo (4,31 MB)
Gradivo ima več datotek! Več...

2.
Recommendations for reporting equivalent black carbon (eBC) mass concentrations based on long-term pan-European in-situ observations
Marjan Savadkoohi, Marco Pandolfi, Olivier Favez, Jean-Philippe Putaud, Konstantinos Eleftheriadis, Markus Fiebig, Philip Hopke, Paolo Laj, A. Wiedensohler, Griša Močnik, 2024, izvirni znanstveni članek

Opis: A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial–temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling regression MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2/g from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2/g from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasizes the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.
Ključne besede: equivalent black carbon, mass absorption cross-section, filter absorption photometers, elemental carbon, absorption, site specific MAC, rolling MAC
Objavljeno v RUNG: 04.03.2024; Ogledov: 2981; Prenosov: 14
.pdf Celotno besedilo (2,46 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.01 sek.
Na vrh