1. 1,8-dihydroxy naphthalene (DHN) - melanin confers tolerance to cadmium in isolates of melanised dark septate endophytesMateja Potisek, Matevž Likar, Katarina Vogel-Mikuš, Iztok Arčon, Jože Grdadolnik, Marjana Regvar, 2021, izvirni znanstveni članek Opis: The contribution of 1,8-dihydroxy naphthalene (DHN) melanin to cadmium (Cd) tolerance in two dark septate
endophytes (DSE) of the genus Cadophora with different melanin content was investigated in vitro. The DSE
isolate Cad#148 with higher melanin content showed higher tolerance to Cd than the less melanised Cad#149.
Melanin synthesis was significantly reduced by Cd in both isolates with uninhibited melanin synthesis, in a dosedependent
manner. Inhibition of melanin synthesis by tricyclazole reduced the relative growth of Cad#148
exposed to Cd and did not affect Cad#149. Cd accumulation was not altered by tricyclazole in the two isolates,
but it increased catalase and reduced glutathione reductase activity in more melanised Cad#148, indicating
higher stress levels. In contrast, in Cad#149 the enzyme activity was less affected by tricyclazole, indicating a
more pronounced role of melanin-independent Cd tolerance mechanisms. Cd ligand environment in fungal
mycelia was analysed by extended EXAFS (X-ray absorption fine structure). It revealed that Cd was mainly bound
to O- and S-ligands, including hydroxyl, carboxyl, phosphate and thiol groups. A similar proportion of S- and Oligands
(~35% and ~65%) were found in both isolates with uninhibited melanin synthesis. Among O-ligands
two types with Cd-O-C- and Cd-O-P- coordination were identified. Tricyclazole altered Cd-O- ligand environment
in both fungal isolates by reducing the proportion of Cd-O-C- and increasing the proportion of Cd-O-P coordination.
DHN-melanin, among other tolerance mechanisms, significantly contributes to Cd tolerance in more
melanised DSE fungi by immobilising Cd to hydroxyl groups and maintaining the integrity of the fungal cell wall. Ključne besede: DSE, melanin, Cd tolerance, inhibitor tricyclazole, antioxidant enzymes, EXAFS Objavljeno v RUNG: 13.07.2021; Ogledov: 3451; Prenosov: 0 Gradivo ima več datotek! Več... |
2. Recent advances in 2D imaging of element distribution in Plants by focused beam techniquesKatarina Vogel-Mikuš, Johannes Teun van Elteren, Marjana Regvar, Jitrin Chaiprapa, Boštjan Jenčič, Iztok Arčon, Alojz Kodre, Peter Kump, Anja Kavčič, Mitja Kelemen, Dino Metarapi, Marijan Nečemer, Primož Vavpetič, Primož Pelicon, Paula Pongrac, 2019, samostojni znanstveni sestavek ali poglavje v monografski publikaciji Ključne besede: 2D Imiging, XRF, XANES, synchrotron light Objavljeno v RUNG: 05.09.2019; Ogledov: 4562; Prenosov: 0 Gradivo ima več datotek! Več... |
3. Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinereaEva Kovačec, Marjana Regvar, Johannes Teun van Elteren, Iztok Arčon, Tamás Papp, Darko Makovec, Katarina Vogel-Mikuš, 2017, izvirni znanstveni članek Opis: Two plant pathogenic fungi, Botrytis cinerea and Alternaria alternata, isolated from crop plants, were
exposed to Cu in ionic (Cu2þ), microparticulate (MP, CuO) or nanoparticulate (NP, Cu or CuO) form, in
solid and liquid culturing media in order to test fungal response and toxic effects of the mentioned
compounds for the potential use as fungicides. B. cinerea has shown pronounced growth and lower levels
of lipid peroxidation compared to A. alternata. Its higher resistance/tolerance is attributed mainly to
biotransformation of CuO and Cu NPs and CuO MPs into a blue compound at the fungal/culturing media
interface, recognized by Cu K-edge EXAFS analysis as Cu-oxalate complex. The pronounced activity of
catechol-type siderophores and organic acid secretion in B. cinerea induce leaching and mobilization of
Cu ions from the particles and their further complexation with extracellularly secreted oxalic acid. The
ability of pathogenic fungus to biotransform CuO MPs and NPs hampers their use as fungicides. However
the results show that B. cinerea has a potential to be used in degradation of Cu(O) nanoparticles in
environment, copper extraction and purification techniques. Ključne besede: copper, metal oxide nanoparticles, detoxification mechanisms, metal pollution, Cu-oxalate Objavljeno v RUNG: 23.08.2017; Ogledov: 5677; Prenosov: 0 Gradivo ima več datotek! Več... |