Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 49
Na začetekNa prejšnjo stran12345Na naslednjo stranNa konec
1.
Catalytic hydro(deoxy)genation of furfural and modelling of its reaction kinetics : dissertation
Rok Šivec, 2024, doktorska disertacija

Opis: In recent decades, there has been a growing interest in producing biofuels and biochemicals from renewable sources. Furfural stands as one of the ligno(hemi)cellulosic biomass derived platform chemical, which can be transformed into numerous value-added products. The goal of this PhD was to systematically study hydrotreatment reactions of furfural under varying operating conditions and to gain insights into the reaction mechanism and kinetics. An extensive experimental and computational study of hydrogenation, hydrodeoxygenation, oligomerisation and etherification of furfural in a three-phase batch reactor was performed. The goals were divided into three consecutive objectives. In the first part, hydrotreatment of furfural over Pd/C catalyst under various reaction conditions, including the solvent selection (solventless conditions, tetrahydrofuran, isopropanol), atmosphere (nitrogen, hydrogen), temperature (100–200 °C), pressure (25–75 bar) and stirring speed, was studied. A reaction pathway network and a micro-kinetic model were developed, incorporating thermodynamics (hydrogen solubility), mass transfer, adsorption, desorption, and surface reactions. These phenomena and their contribution to the surface coverages, TOF’s and global reaction rates were studied. The hydrogen presence on the catalyst surface was found to influence the main reaction pathway, leading to ring, aldehyde group or full hydrogenation. In the second part, various monometallic catalysts (Pd/C, Pt/C, Re/C, Ru/C, Rh/C, Ni/C, Cu/C) were tested at 100 -200 °C with 60 bar of hydrogen and tetrahydrofuran as solvent. A generalized reaction pathway network was developed. H2 temperature-programmed reduction (H2-TPR) and CO temperature-programmed desorption (CO-TPD) were conducted, and a regression analysis of the results was subsequently performed by numerical modelling and optimisation. The obtained adsorption and desorption kinetic parameters for active metallic sites were further used in a generalized micro-kinetic model, applicable to all tested catalysts. Pd/C exhibited high activity and non-selective hydrogenation of furfural, while other catalysts showed selective aldehyde group hydrogenation followed by deoxygenation, consistent with density functional theory (DFT) calculations. Ru/C uniquely produced 2 methyltetrahydrofuran and ring-opening products at 200 °C. In silico optimization of reaction conditions for promising catalysts ((Pd/C, Pt/C, Re/C, Ni/C) aimed to maximize the yield of the target product. In the third part, the influence of support on catalytic activity was studied. Hydrotreatment of furfural over Pd/Al2O3, Pd/SiO2, Ru/Al2O3, Ru/SiO2, Ni/Al2O3, and Ni/SiO2 was performed between 150 - 200 °C, using 60 bar of hydrogen and tetrahydrofuran as solvent. The strength and rate of adsorption and desorption to/from acidic, metallic and interface site structures were determined, using H2-TPR, CO-TPD and NH3-TPD and subsequent regression analysis of the results by numerical modelling and optimisation. The resulting parameters were sequentially used in the generalized micro-kinetic model to quantify the contribution of the active metal (Ni, Pd, or Ru), support (Al2O3 or SiO2), interphase sites and their relationship on catalyst activity and selectivity. Evaluation of morphological and structural characteristics, adsorption/desorption and intrinsic reaction kinetics has indicated that the coverage of acidic sites (on alumina or silica) facilitated yielding ring hydrogenation and inhibited deoxygenation, decarbonylation and cyclic compound opening. The rates for aromatics or aldehyde functional groups were, nonetheless, affected in a different order. The used and developed methods and findings of this PhD offer useful guidelines for transforming furfural into high-value chemicals through catalytic hydrotreatment, with significant implications for future research and industrial applications.
Ključne besede: lignocellulosic biomass, furfural, catalytic hydrogenation, micro-kinetic mass transfer model, reaction kinetics, first-principle methods, furfuryl alcohol, tetrahydrofurfuryl alcoholv, dissertations
Objavljeno v RUNG: 08.11.2024; Ogledov: 292; Prenosov: 4
.pdf Celotno besedilo (9,22 MB)

2.
Structural and chemical analysis of hard carbon negative electrode for Na-ion battery with X-ray Raman scattering and solid-state NMR spectroscopy
Ava Rajh, Matej Gabrijelčič, Blaž Tratnik, Klemen Bučar, Iztok Arčon, Marko Petric, Robert Dominko, Alen Vižintin, Matjaž Kavčič, izvirni znanstveni članek

Opis: This study explores the structural changes of hard carbon (HC) negative electrodes in sodium-ion batteries induced by insertion of Na ions during sodiation. X-ray Raman spectroscopy (XRS) was used to record both C and Na K-edge absorption spectra from bulk HC anodes carbonized at different temperatures and at several points during sodiation and desodiation. Comparing the [pi]*/[sigma]* regions in the C K-edge spectra sp2/sp3 hybridization ratio of material was determined. Higher carbonization temperatures led to increased order in graphitic structure and shorter bond lengths. Sodiation caused a decrease in graphitic layer order due to inserted Na ions. Complementary operando solid state 23Na nuclear magnetic resonance (ssNMR) studies confirmed the structural changes, while showing pore filling mechanism, which is not observed in ex situ measurements, primarily at higher carbonization temperatures. XRS analysis of Na K-edge spectra revealed systematic variations in the solid electrolyte interface (SEI) composition during cycling. Changes in XRS spectra were attributed to both SEI composition alterations, accompanied by the insertion/adsorption of Na ions at defect sites within the carbon structure.
Ključne besede: hard carbon, RIXS, carbon XANES, EXAFS, NMR, Na battery
Objavljeno v RUNG: 10.09.2024; Ogledov: 778; Prenosov: 1
.pdf Celotno besedilo (7,76 MB)
Gradivo ima več datotek! Več...

3.
Structural and chemical analysis of Na-ion batteries with X-ray Raman scattering spectroscopy
Ava Rajh, Matej Gabrijelčič, Alen Vižintin, Klemen Bučar, Iztok Arčon, Marko Petric, Robert Dominko, 2024, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: X-Ray Raman, Na-ion batteries
Objavljeno v RUNG: 05.07.2024; Ogledov: 960; Prenosov: 3
URL Povezava na datoteko
Gradivo ima več datotek! Več...

4.
Non-oxidative calcination enhances the methane dry reforming performance of ▫$Ni/CeO_{2−x}$▫ catalysts under thermal and photo-thermal conditions
Kristijan Lorber, Vasyl Shvalya, Janez Zavašnik, Damjan Vengust, Iztok Arčon, Matej Huš, Andraž Pavlišič, Janvit Teržan, Uroš Cvelbar, Blaž Likozar, Petar Djinović, 2024, izvirni znanstveni članek

Opis: We analyzed the effect of the calcination atmosphere and visible-light contribution to an accelerated reaction rate and improved H2 selectivity over 2 wt% Ni/CeO2−x nanorod catalysts. Spectroscopic and structural characterization was performed by operando DRIFTS, in situ Raman, UV-vis and XAS techniques, which were complemented by DFT calculations. Calcination in an argon or H2 atmosphere yields 15% more active catalysts in the thermally driven reaction, which are also more susceptible to light-induced rate acceleration compared to the catalyst calcined in air. The most active 2Ni/CeO2 catalyst calcined in hydrogen converts methane with a rate of 7.5 mmol (gcat min)−1 and produces a H2/ CO ratio of 0.6 at 460 °C when stimulated by a combination of visible light and thermal energy. In the absence of visible light illumination and at an identical catalyst temperature, the achieved methane rate was 4.2 mmol (gcat min)−1 and the H2/CO ratio was 0.49. The non-oxidative calcination improves nickel dispersion and the formation of subnanometer sized Ni clusters, together with a higher abundance of surface and bulk oxygen vacancies in ceria nanorods. The Ni–Ov–Ce3+components constitute the catalytically active sites under visible light illumination, which enable the DRM reaction to proceed with an Ea value of 20 kJ mol−1. Visible light also induces the following changes in the 2Ni/CeO2−x catalyst during the DRM reaction: (1) decomposition and desorption of carbonates from the nickel–ceria interface sites, (2) reduced population of nickel surface with carbonyl species and (3) promoted adsorption and dissociation of methane.
Ključne besede: methane dry reforming performance, calcination
Objavljeno v RUNG: 05.07.2024; Ogledov: 1058; Prenosov: 18
.pdf Celotno besedilo (4,24 MB)
Gradivo ima več datotek! Več...

5.
Optical properties and simple forcing efficiency of the organic aerosols and black carbon emitted by residential wood burning in rural Central Europe
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, 2024, izvirni znanstveni članek

Opis: Abstract. Recent years have seen an increase in the use of wood for energy production of over 30 %, and this trend is expected to continue due to the current energy crisis and geopolitical instability. At present, residential wood burning (RWB) is one of the most important sources of organic aerosols (OA) and black carbon (BC). While BC is recognized for its large light absorption cross-section, the role of OA in light absorption is still under evaluation due to their heterogeneous composition and source-dependent optical properties. Studies that characterize wood-burning aerosol emissions in Europe typically focus on urban and background sites and only cover BC properties. However, RWB is more prevalent in rural areas, and the present scenario indicates that an improved understanding of the RWB aerosol optical properties and their subsequent connection to climate impacts is necessary for rural areas. We have characterized atmospheric aerosol particles from a central European rural site during wintertime in the village of Retje in Loški Potok, Slovenia, from 01.12.2017 to 07.03.2018. The village experienced extremely high aerosol concentrations produced by RWB and near-ground temperature inversion. The isolated location of the site and the substantial local emissions made it an ideal laboratory-like place for characterizing RWB aerosols with low influence from non-RWB sources under ambient conditions. The mean mass concentrations of OA and BC were 34.8 µg m-3 (max = 271.8 µg m-3) and 3.1 µg m-3 (max = 24.3 µg m-3), respectively. The mean total particle number concentration (10–600 nm) was 9.9 x 103 particles cm-3 (max = 53.5 x 103 particles cm-3). The mean total light absorption coefficient at 370 nm and 880 nm measured by an Aethalometer AE33 were 122.8 Mm-1 and 15.3 Mm-1 and had maximum values of 1103.9 Mm-1 and 179.1 Mm-1, respectively. The aerosol concentrations and absorption coefficients measured during the campaign in Loški Potok were significantly larger than those reported values for several urban areas in the region with larger populations and extent of aerosol sources. Here, considerable contributions from brown carbon (BrC) to the total light absorption were identified, reaching up to 60 % and 48 % in the near UV (370 nm) and blue (470 nm) wavelengths. These contributions are up to three times higher than values reported for other sites impacted by wood-burning emissions. The calculated mass absorption cross-section and the absorption Ångström exponent for RWB OA were MACOA, 370 nm= 2.4 m2 g-1, and AAEBrC, 370–590 nm= 3.9, respectively. Simple forcing efficiency (SFE) calculations were performed as a sensitivity analysis to evaluate the climate impact of the RWB aerosols produced at the study site by integrating the optical properties measured during the campaign. The SFE results show a considerable forcing capacity from the local RWB aerosols, with a high sensitivity to OA absorption properties and a more substantial impact over bright surfaces like snow, typical during the coldest season with higher OA emissions from RWB. Our study's results are highly significant regarding air pollution, optical properties, and climate impact. The findings suggest that there may be an underestimation of RWB emissions in rural Europe and that further investigation is necessary.
Ključne besede: wood-burning aerosols, optical characterization, black carbon, rural areas
Objavljeno v RUNG: 10.01.2024; Ogledov: 1832; Prenosov: 11
.pdf Celotno besedilo (1,99 MB)
Gradivo ima več datotek! Več...

6.
The role of lattice defects on the optical properties of TiO[sub]2 nanotube arrays for synergistic water splitting
Manel Machreki, Takwa Chouki, Georgi Tyuliev, Mattia Fanetti, Matjaž Valant, Denis Arčon, Matej Pregelj, Saim Emin, 2023, izvirni znanstveni članek

Opis: In this study, we report a facile one-step chemical method to synthesize reduced titanium dioxide (TiO2) nanotube arrays (NTAs) with point defects. Treatment with NaBH4 introduces oxygen vacancies (OVs) in the TiO2 lattice. Chemical analysis and optical studies indicate that the OV density can be significantly increased by changing reduction time treatment, leading to higher optical transmission of the TiO2 NTAs and retarded carrier recombination in the photoelectrochemical process. A cathodoluminescence (CL) study of reduced TiO2 (TiO2–x) NTAs revealed that OVs contribute significantly to the emission bands in the visible range. It was found that the TiO2 NTAs reduced for a longer duration exhibited a higher concentration of OVs. A typical CL spectrum of TiO2 was deconvoluted to four Gaussian components, assigned to F, F+, and Ti3+ centers.
Ključne besede: TiO2 nanotubes, defects, cathodoluminescence
Objavljeno v RUNG: 13.12.2023; Ogledov: 1345; Prenosov: 9
.pdf Celotno besedilo (5,75 MB)
Gradivo ima več datotek! Več...

7.
8.
9.
10.
Nova topografija : diplomsko delo
Matej Turk, 2022, diplomsko delo

Opis: V diplomskem delu je najprej na kratko obrazložen pojem »nova topografija« in od kje izvira sam izraz. Nato sledi opis pojma pokrajina in kaj je ta pojem pomenil v slikarski umetnosti, zatem pa še opis pokrajine v fotografijah in kako so te krajinske fotografije prešle iz funkcionalnosti v umetnost. Besedilo nato nekoliko podrobneje opiše razstavo New Topographics (Rochester, New York, 1975) in avtorska dela sodelujočih avtorjev. Po predstavitvi razstave sledi opis objektivnega stila fotografije, ki je bil ključnega pomena za razstavo, in kako je ta vplival na kasnejše fotografe, ki pa se niso osredotočali zgolj na krajinsko fotografijo. Teoretični del se konča s predstavitvijo štirih avtorjev – Bernd in Hilla Becher, Edward Burtynsky in pa Chris Jordan, ki so bili velik navdih za fotografije v praktičnem delu moje diplomske naloge in pa po mojem mnenju tudi pomembni predstavniki fotografske razstave New Topographics. Nato sledi praktični del diplomske naloge z opisom moje fotografske serije Barje s priloženimi fotografijami.
Ključne besede: fotografija, krajinska fotografija, nova topografija, objektivni stil, človeško spremenjene pokrajine, ameriški Zahod, diplomske naloge
Objavljeno v RUNG: 08.08.2022; Ogledov: 2759; Prenosov: 82
.pdf Celotno besedilo (16,11 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.04 sek.
Na vrh