Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 10 / 142
Na začetekNa prejšnjo stran12345678910Na naslednjo stranNa konec
Utilizing Structurally Disordered AlMg-Oxide Phase in Cu/ZnO Catalyst for Efficient CO2 Hydrogenation to Methanol
Andraž Mavrič, Gregor Žerjav, Blaž Belec, Matevž Roškarič, Matjaž Finšgar, Albin Pintar, Matjaž Valant, 2023, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: carbon dioxide, methanol, catalysis
Objavljeno v RUNG: 15.09.2023; Ogledov: 329; Prenosov: 0
Gradivo ima več datotek! Več...

In Situ Techniques for Characterization of Layered Double Hydroxide-Based Oxygen Evolution Catalysts
Andraž Mavrič, Matjaž Valant, 2023, pregledni znanstveni članek

Opis: Functional layered double hydroxide (LDH) usually contains different cationic substitutes to increase the activity of the oxygen evolution reaction (OER). The intrinsic OER activity of LDH materials is connected with the chemical composition and dispersion of metal cations substitutions in the matrix phase. The potential induced phase transitions, in particular hydroxide-to-oxyhydroxide transitions, are a predisposition for the high OER activity of LDH materials and can be followed by coupling the electrochemical experiments with spectroscopic techniques. The understanding of LDH catalysts under electrochemical conditions also allows an understanding of the behavior of OER catalysts based on transition metals, metal-chalcogenides, -pnictides, -carbides, and metal–organic frameworks. The surfaces of those materials are intrinsically poor OER catalysts. However, they act as precursors to catalysts, which are oxidized into a metal (oxy)hydroxide. This review summarizes the use of in situ techniques for the characterization of LDH-based OER electrocatalysts and presents the influence of these techniques on the understanding of potential induced phase transitions, identification of active sites, and reaction mechanisms.
Ključne besede: oxygen evolution reaction, layered double hydroxide, in-situ characterization
Objavljeno v RUNG: 14.07.2023; Ogledov: 599; Prenosov: 5
.pdf Celotno besedilo (5,05 MB)
Gradivo ima več datotek! Več...

Saturation magnetisation as an indicator of the disintegration of barium hexaferrite nanoplatelets during the surface functionalisation
Klemen Lisjak, Iztok Arčon, Matic Poberžnik, Gabriela Herrero‑Saboya, Ali Tufani, Andraž Mavrič, Matjaž Valant, Patricija Hribar, Alenka Mertelj, Darko Makovec, Layla Martin‑Samos, 2023, izvirni znanstveni članek

Opis: Barium hexaferrite nanoplatelets (BHF NPLs) are permanent nanomagnets with the magnetic easy axis aligned perpendicular to their basal plane. By combining this specific property with optimised surface chemistry, novel functional materials were developed, e.g., ferromagnetic ferrofluids and porous nanomagnets. We compared the interaction of chemically different phosphonic acids, hydrophobic and hydrophilic with 1–4 phosphonic groups, with BHF NPLs. A decrease in the saturation magnetisation after functionalising the BHF NPLs was correlated with the mass fraction of the nonmagnetic coating, whereas the saturation magnetisation of the NPLs coated with a tetraphosphonic acid at 80 °C was significantly lower than expected. We showed that such a substantial decrease in the saturation magnetisation originates from the disintegration of BHF NPLs, which was observed with atomic-resolution scanning transmission electron microscopy and confirmed by a computational study based on state-of-the-art first-principles calculations. Fe K-edge XANES (X-ray absorption near-edge structure) and EXAFS (Extended X-ray absorption fine structure) combined with Fourier-transformed infrared (FTIR) spectroscopy confirmed the formation of an Fe–phosphonate complex on the partly decomposed NPLs. Comparing our results with other functionalised magnetic nanoparticles confirmed that saturation magnetisation can be exploited to identify the disintegration of magnetic nanoparticles when insoluble disintegration products are formed.
Ključne besede: barium hexaferrite, Fe XANES, EXAFS, magnetic nanoparticles
Objavljeno v RUNG: 06.07.2023; Ogledov: 598; Prenosov: 2
URL Povezava na datoteko
Gradivo ima več datotek! Več...

Structural Disorder of AlMg-Oxide Phase Supporting Cu/ZnO Catalyst Improves Efficiency and Selectivity for CO2 Hydrogenation to Methan
Andraž Mavrič, Žerjav Gregor, Belec Blaž, Roškarič Matevž, Finšgar Matjaž, Pintar Albin, Valant Matjaž, 2023, izvirni znanstveni članek

Opis: The performance of the Cu/ZnO catalyst system with the AlMg-oxide phase is studied for CO2 hydrogenation to methanol. The catalyst is prepared by thermal treatment of the hydrotalcite phase containing intimately mixed metal cations in the hydroxide form. CuO in the presence of ZnO and disordered AlMg-oxide phase gets easily reduced to Cu during the hydrogenation reaction. Its catalytic activity at relatively low Cu metal content (∼14 at.%) remains stable during 100 hours on stream at 260 °C with constant space-time yield for methanol (∼1.8 gMeOH gcat−1 h−1) and high methanol selectivity (>85 %) The improved performance is attributed to the neutralization of surface acidity, increased number of weak basic sites in the disordered phase, and lower tendency for coke formation.
Ključne besede: carbon dioxide hydrogenation, heterogenous catalysis, methanol, reducibility
Objavljeno v RUNG: 02.06.2023; Ogledov: 604; Prenosov: 7
.pdf Celotno besedilo (1,12 MB)

Efficiency of the grid energy storage technology based on iron-chloride material cycle
Uroš Luin, doktorska disertacija

Opis: Future high-capacity energy storage technologies are crucial for a highly renewable energy mix, and their mass deployment must rely on cheap and abundant materials, such as iron chloride. The iron chloride electrochemical cycle (ICEC), suitable for long-term grid energy storage using a redox potential change of Fe2+/Fe, involves the electrolysis of a highly concentrated aqueous FeCl2 solution yielding solid iron deposits. For the high overall energy efficiency of the cycle, it is crucial maximizing the energy efficiency of the electrolysis process. The thesis presents a study of the influence of electrolysis parameters on energy efficiency, performed in an industrial-type electrolyzer system. We studied the conductivity of the FeCl2 solution as a function of concentration and temperature and correlated it with the electrolysis energy efficiency as a function of current density. The contribution of the resistance polarization increases with the current density, causing a decrease in overall energy efficiency. The highest energy efficiency of 89 ±3 % was achieved using 2.5 mol dm-3 FeCl2 solution at 70 °C and a current density of 0.1 kA m-2. In terms of the energy input per Fe mass, this means 1.88 Wh g-1. The limiting energy input per mass of the Fe-deposit, calculated by extrapolating experimental results toward Eocell potential, was found to be 1.76 Wh g-1. For optimal long-duration electrolysis efficiency and performance, the optimal catholyte concentration range is 1-2 mol dm-3 FeCl2. We performed in situ X-ray absorption spectroscopy experimental studies to validate theoretical conclusions from literature related to the population and structure of Fe-species in the FeCl2 (aq) solution at different concentrations (1 - 4 mol dm-3) and temperatures (25 - 80 °C). This revealed that at low temperature and low FeCl2 concentration, the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33 (±0.02) Å and five H2O at a distance of 2.095 (±0.005) Å. The structure of the ionic complex gradually changes with an increase in temperature and/or concentration. The apical H2O is substituted by a Cl ion to yield a neutral Fe[Cl2(H2O)4]0. The transition from the charged Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well correlates with the existing state-of-the-art conductivity models. An additional steric impediment of the electrolytic cell is caused by the predominant neutral species present in the catholyte solution at high concentration. This correlates with poor electrolysis performance at a very high catholyte concentration (4 mol dm-3 FeCl2), especially at high current densities (> 1 kA m-2). The neutral Fe[Cl2(H2O)4]0 complex negatively affects the anion exchange membrane ion (Cl-) transfer and lowers the concentration of electroactive species (Fe[Cl(H2O)5]+) at the cathode surface. The kinetics of hydrogen evolution from the reaction between Fe powder and HCl acid was studied under the first-order reaction condition. The activation energy was determined to be 55.3 kJ mol-1.
Ključne besede: ICEC, Power-to-Solid, energy storage, hydrogen, ferrous chloride, electrolysis, Fe deposition, efficiency, XAS, structure and population, ionic species, ion association, conductivity
Objavljeno v RUNG: 18.04.2023; Ogledov: 868; Prenosov: 20  (1 glas)
.pdf Celotno besedilo (4,34 MB)

Non-covalent ligand-oxide interaction promotes oxygen evolution
Qianbao Wu, Junwu Liang, Mengjun Xiao, Chang Long, Lei Li, Zhenhua Zheng, Andraž Mavrič, Xia Zheng, Hai-Wei Liang, Hongfei Liu, Matjaž Valant, Wei Wang, Zhengxing Lv, Jiong Li, Chunhua Cui, 2023, izvirni znanstveni članek

Opis: Strategies to generate high-valence metal species capable of oxidizing water often employ composition and coordination tuning of oxide-based catalysts, where strong covalent interactions with metal sites are crucial. However, it remains unexplored whether a relatively weak “non-bonding” interaction between ligands and oxides can mediate the electronic states of metal sites in oxides. Here we present an unusual non-covalent phenanthroline-CoO2 interaction that substantially elevates the population of Co4+ sites for improved water oxidation. We find that phenanthroline only coordinates with Co2+ forming soluble Co(phenanthroline)2(OH)2 complex in alkaline electrolytes, which can be deposited as amorphous CoOxHy film containing non-bonding phenanthroline upon oxidation of Co2+ to Co3+/4+. This in situ deposited catalyst demonstrates a low overpotential of 216 mV at 10 mA cm−2 and sustainable activity over 1600 h with Faradaic efficiency above 97%. Density functional theory calculations reveal that the presence of phenanthroline can stabilize CoO2 through the non-covalent interaction and generate polaron-like electronic states at the Co-Co center.
Ključne besede: water oxidation, cobalt hydroxide, ligand-metal interactions
Objavljeno v RUNG: 23.02.2023; Ogledov: 926; Prenosov: 11
.pdf Celotno besedilo (1,77 MB)

Composites of transition metal dichalcogenides and topological insulators as a new class of catalytic materials
Jelena Rmuš, Blaž Belec, Igor Milanović, Mattia Fanetti, Sandra Gardonio, Matjaž Valant, Sandra V. Kurko, 2022, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: composites, topological insulators
Objavljeno v RUNG: 13.02.2023; Ogledov: 659; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh