Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


21 - 30 / 74
Na začetekNa prejšnjo stran12345678Na naslednjo stranNa konec
21.
22.
23.
Household and road dust as indicators of airborne particulate matter elemental composition : dissertation
Klemen Teran, 2020, doktorska disertacija

Opis: Household dust (HD) and road dust (RD) are widespread and easily accessible urban sediments, which are influenced by deposition of airborne particulate matter (PM). Since airborne PM is considered to be one of the most important pollutants in urban areas, with significant adverse effects on human health, a better understanding of its elemental composition and dispersion mechanisms is needed. The present study examines whether the HD and RD elemental composition can be used as a quick alternative method for the determination of corresponding PM elemental composition over a selected area. In summer 2016, HD, RD, and topsoil samples were collected from 249 sampling locations distributed across rural, urban, and industrial areas in Slovenia. The collected samples were sieved for particle diameters below 63 μm and analysed for 53 elements with ICP-MS after aqua regia digestion. SEM/EDS analyses were applied for the determination of characteristic particles at the microlevel. Finally, the elemental composition of HD and RD was compared with the PM10 elemental composition obtained from National Network for Ambient Air Quality Monitoring governed by Slovenian Environmental Agency (ARSO) to determine any potential connection between them. The results show that HD and RD are considerably enriched with a large set of elements compared to the topsoil. Correlations and factor analyses show that spatial distribution of factor scores in RD revealed strong regional trends, connected with soil resuspension (Al, Ce, Ga, K, La, Li, P, Rb, Sc and Y) or with anthropogenic sources such as traffic (Ag, Bi, Cu, Sb and Sn), steel mill emissions (Cr, Mo, Mn, Ni and W) and construction material decomposition (Ca and Sr). In contrast, HD elemental composition was highly variable between sampling locations. Variability was probably caused by indoor sources, such as smoking (Ce and La), biomass combustion (K, P and Rb), construction material decomposition (Ca and Sr) and residents’ professional occupation: dental care employees (Ag, Au, Pd) and employees in the metal-processing industry (Cr, Mo, Ni). Among deposited particles in RD, urbanization processes, such as fossil fuel combustion and traffic emissions, including brake pad abrasion and tyre wear, contributed the largest share of particles with anomalous elemental composition. Brake pad abrasion, for instance, contributed Ba-, Cu-, Sn-, and Zn-enriched irregular, angular and tabular particles, while tyre wear produced elongated rubber particles with traces of Ba, Cu, and Zn. RD from urban areas showed significantly higher elemental levels of Ag, Bi, Ca, Cd, Cr, Cu, Hg, Fe, Mo, Nb, Pb, Pt, Sb, Sn, Sr, Ti, Zn, and W in comparison to the rural environment, indicating the strong impact of urbanization on RD elemental composition. Another important anthropogenic source of deposited particles in RD were steel mills. Strong anomalies of Cr, Mo and Ni were detected in their vicinity. Their elemental levels decreased with distancing from the plan location, reaching urban background levels between 15 and 20 km from the mills. SEM/EDS analyses identified enrichments of Cr, Mn, Mo, Ni, V, and W in spherical particles and particles with partially melted surfaces, which were found only in the proximity of steel mills, indicating their influence of the PM deposition. Comparison of RD and the corresponding PM10 elemental composition showed that the RD fraction with particle diameters below 63 μm reflects PM10 elemental composition for the last 30 to 90 days for Cr, Cu, Mo and Zn and can be used as a predictor for PM10 elemental levels. This is not true for HD, as indoor particle sources prevail over the deposition of ambient PM10.
Ključne besede: household dust, road dust, particulate matter, PM10, pollution, Slovenia, steel mills, topsoil, traffic, urbanization
Objavljeno v RUNG: 02.12.2020; Ogledov: 2693; Prenosov: 146
.pdf Celotno besedilo (16,34 MB)

24.
25.
26.
Chemical Instability of an Interface between Silver and Bi2Se3 Topological Insulator at Room Temperature
Katja Ferfolja, Matjaž Valant, Iuliia Mikulska, Sandra Gardonio, Mattia Fanetti, 2018, izvirni znanstveni članek

Opis: Understanding an interaction at an interface between a topological insulator and a metal is of critical importance when designing electronic and spintronic devices or when such systems are used in catalysis. In this paper, we report on a chemical instability of the interface between Bi2Se3 and Ag studied by X-ray powder diffraction and electron microscopy. We present strong experimental evidence of a redox solid-state reaction occurring at the interface with kinetics that is significant already at room temperature. The reaction yields Ag2Se, AgBiSe2, and Bi. The unexpected room-temperature chemical instability of the interface should be considered for all future theoretical and applicative studies involving the interface between Bi2Se3 and Ag.
Ključne besede: topological insulators, Ag, thin metal films, interfaces, redox reaction
Objavljeno v RUNG: 17.06.2020; Ogledov: 2182; Prenosov: 0
Gradivo ima več datotek! Več...

27.
Improved photocatalytic activity of anatase-rutile nanocomposites induced by low-temperature sol-gel Sn-modification of TiO2
Ksenija Maver, Iztok Arčon, Urška Lavrenčič Štangar, Mattia Fanetti, Saim Emin, Matjaž Valant, 2020, izvirni znanstveni članek

Opis: The Sn-modified TiO2 photocatalysts are prepared by low-temperature sol-gel processing based on organic titanium and tin precursors with varied Sn concentrations (from 0.1–20 mol .%). The role of Sn dopant as the promotor of the formation of TiO2 rutile crystalline phase is explained and the optimal Sn concentration for preparation of efficient Sn-modified titania photocatalyst is determined. Up to 40 % increase in photocatalytic activity is achieved in Sn-modified TiO2 photocatalytic thin films dried at 150 °C with low Sn concentrations in the range from 0.1 to 1 mol .%. At low Sn concentrations optimal ratio between anatase and rutile (nano)crystals is obtained, which facilitates charge separation at the TiO2 photocatalyst’s surface. When the concentration of Sn increases above 5 mol.% or when the films are calcined at 500 °C, the relative amount of rutile phase with inferior photocatalytic activity, increases and the nanocrystals of titania grow, leading to fewer active sites per unit mass and the reduction of activity in comparison to unmodified TiO2.
Ključne besede: Anatase-rutile Sn-modified TiO2 XAS analysis Photocatalytic activity
Objavljeno v RUNG: 10.02.2020; Ogledov: 2374; Prenosov: 0
Gradivo ima več datotek! Več...

28.
Interfacial reaction, morphology and growth mode of metals on topological insulator surfaces
Sandra Gardonio, Mattia Fanetti, Katja Ferfolja, Matjaž Valant, 2019, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: topological insulators, surfaces, metals
Objavljeno v RUNG: 19.12.2019; Ogledov: 2597; Prenosov: 0
Gradivo ima več datotek! Več...

29.
Looking for a topological insulator in the tetradymite family
Zipporah Rini Benher, Sandra Gardonio, Mattia Fanetti, P. M. Sheverdyaeva, Paolo Moras, Matjaž Valant, 2019, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Materials that are topological insulators (TI) manifest a novel state for their electrons. They possess topological surface states that are not destroyed by the presence of non-magnetic impurities on their surfaces. This unique property lies in the bulk band structure and it is typically found in narrow gap semiconductor with strong spin-orbit coupling. Bi2Se3 and Bi2Te3 belong to the class of compounds called tetradymites and are considered as the 3D-prototypical TI materials. However, these compounds are not usually insulators but have metallic bulk conductivity as a consequence of intrinsic defect doping: vacancies and anti-site defects. For these reasons, it is difficult to electrically gate these materials for the manipulation and control of charge carriers for realizing devices. This led to the search for other topological materials, which might have better insulating behavior in their bulk. Theoretical studies have pointed out that ternary variants of the Bi2Se3 and Bi2Te3, such as Bi2Te2Se, Bi2Te2S, Bi2Se2S Sb2Te2Se and Sb2Te2S, should be stable TIs and potentially offer a chemical way to control TI behavior, in particular by lowering native doping. Among the cited ternary compounds, Bi2Se2S should manifest a genuine topological spin-transport regime hosting an isolated Dirac cone with the Dirac point in the gap as well. However, it has been poorly studied from the TI experimental perspective. Therefore, to uncover the full potential of the predicted topological electronic properties of the Bi-Se-S system, in this presentation we will revisit the crystallographic and electronic structure of Bi2Se3-Bi2S3 solid solutions. The combined use of bulk and surface sensitive techniques such as X-ray diffraction (XRD), low energy electron diffraction (LEED), scanning electron microscopy (SEM) with Energy Dispersive X-ray spectroscopy (EDX) and X-ray photoemission spectroscopy (XPS) was applied to analyze single crystal samples grown by us. The quality of the single crystals was suitable for rigorous measurement of the electronic properties by means of Angle Resolved Photoemission Spectroscopy. We unambiguously showed that within a certain solid solution range, the single crystals of Bi-Se-S have a rombohedral structure with the topological surface states as theoretically predicted.
Ključne besede: topological insulators, ternary tetradymite, electronic properties.
Objavljeno v RUNG: 19.12.2019; Ogledov: 2996; Prenosov: 0
Gradivo ima več datotek! Več...

30.
A DNA origami plasmonic sensor with environment-independent read-out
Matjaž Valant, Mattia Fanetti, 2019, izvirni znanstveni članek

Ključne besede: DNA origami, plasmonic sensor, molecular detection, gold nanoparticle
Objavljeno v RUNG: 08.11.2019; Ogledov: 2413; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.08 sek.
Na vrh