1. Prospects for a survey of the galactic plane with the Cherenkov Telescope ArrayK. Abe, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, izvirni znanstveni članek Opis: Approximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way, detected with a combination of targeted observations and surveys. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from recent observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the three main classes of established Galactic VHE sources (pulsar wind nebulae, young and interacting supernova remnants, and compact binary systems), as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy (pointing pattern and scheduling) based on recent estimations of the instrument performance. We use the improved sky model and observation strategy to simulate GPS data corresponding to a total observation time of 1620 hours spread over ten years. Data are then analysed using the methods and software tools under development for real data. Under our model assumptions and for the realisation considered, we show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, to confirm the existence of a hypothetical population of gamma-ray pulsars with an additional TeV emission component, and to detect bright sources capable of accelerating particles to PeV energies (PeVatrons). Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. Thus, a survey of the entire Galactic plane carried out from both hemispheres with CTAO will ensure a transformational advance in our knowledge of Galactic VHE source populations and interstellar emission. Ključne besede: very-high-energy gamma rays, Cherenkov Telescope Array Observatory, CTAO Galactic Plane Survey, galactic cosmic rays, pulsar wind nebulae, supernova remnants, galactic PeVatrons, binary systems, diffuse emission Objavljeno v RUNG: 28.10.2024; Ogledov: 366; Prenosov: 0 Celotno besedilo (4,26 MB) Gradivo ima več datotek! Več... |
2. Prospects for ▫$\gamma-ray$▫ observations of the Perseus galaxy cluster with the Cherenkov Telescope ArrayK. Abe, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, izvirni znanstveni članek Opis: Galaxy clusters are expected to be both dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster’s formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at γ-ray energies and are predicted to be sources of large-scale γ-ray emission due to hadronic interactions in the intracluster medium (ICM). In this paper, we estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse γ-ray emission from the Perseus galaxy cluster. We first perform a detailed spatial and spectral modelling of the expected signal for both the DM and the CRp components. For each case, we compute the expected CTA sensitivity accounting for the CTA instrument response functions. The CTA observing strategy of the Perseus cluster is also discussed. In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratio X500 within the characteristic radius R500 down to about X500 < 0.003, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index αCRp = 2.3. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure αCRp down to about ∆αCRp ≃ 0.1 and the CRp spatial distribution with 10% precision, respectively. Regarding DM, CTA should improve the current ground-based γ-ray DM limits from clusters observations on the velocity- averaged annihilation cross-section by a factor of up to ∼ 5, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models with τχ > 10[sup]27 s for DM masses above 1 TeV. These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario. Ključne besede: cosmic ray experiments, dark matter experiments, galaxy clusters, gamma ray experiments, very-high energy gamma rays, Cherenkov Telescope Array Observatory, Perseus galaxy cluster Objavljeno v RUNG: 09.10.2024; Ogledov: 421; Prenosov: 1 Celotno besedilo (9,26 MB) Gradivo ima več datotek! Več... |
3. Dark matter line searches with the Cherenkov Telescope ArrayS. Abe, Saptashwa Bhattacharyya, Christopher Eckner, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, izvirni znanstveni članek Opis: Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating
or decaying dark matter particles that could relatively easily be distinguished from astrophysical
or instrumental backgrounds. We provide an updated assessment of the sensitivity of
the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic
centre region as well as of selected dwarf spheroidal galaxies. We find that current limits
and detection prospects for dark matter masses above 300 GeV will be significantly improved,
by up to an order of magnitude in the multi-TeV range.
This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world's largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing
on regions with large dark matter densities.
Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly
model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g. box-shaped spectra, that would likewise very clearly point to a particle dark matter origin. Ključne besede: dark matter experiments, dark matter theory, gamma ray experiments, Cherenkov Telescope Array Observatory Objavljeno v RUNG: 24.09.2024; Ogledov: 477; Prenosov: 5 Celotno besedilo (2,04 MB) Gradivo ima več datotek! Več... |
4. |
5. |
6. Characterization of atmospheric properties over the Cherenkov Telescope Array at La PalmaMiha Živec, doktorska disertacija Opis: Imaging Atmospheric Cherenkov Telescope (IACT) systems are used in high-energy astrophysics to detect and study gamma-ray sources in the universe. These telescopes measure properties of cosmic gamma rays using Cherenkov radiation emitted by secondary particles produced after interacting with the Earth’s atmosphere. Atmospheric monitoring is crucial for the proper operation of IACT systems. A number of remote sensing and in situ methods are used to understand and correct the effects of the atmosphere on the propagation of Cherenkov radiation from its origin to the telescope. Failure to do so greatly decreases IACT performance, particularly, their energy resolution and threshold. Lidar systems can be used to measure atmospheric optical depth profiles, which are essential for IACT calibration.
The main aim of this thesis is to demonstrate that a prototype lidar for the north-ern site of the Cherenkov Telescope Array Observatory (CTAO), which is a next-generation IACT now under construction, has hardware and software capabilities that would lead to the construction of CTAO Raman lidar. Due to specific require-ments of the CTAO, a Raman lidar, which can provide better atmospheric parameter accuracy, will be used for the first time in an IACT system. In 2021-2022 the BRL was deployed to the future CTAO-North site at the Roque de los Muchachos observatory, La Palma, for testing in its actual operating conditions. During a year and a half long test period, it underwent a number of tests, including manual and remote operation under various environmental conditions. These included hot summers, cold winters, rain, snow, ice, and strong winds, but also some more exotic events, such as desert sand intrusions (Calima) and volcanic eruptions. The latter two are presented in this work as test cases for atmospheric characterization.
Since the main goal of a CTAO lidar is the optical depth measurements, the BRL does not have the full set of features for aerosol characterization. While it can yield the ˚Angstr¨om exponent and lidar ratio, it does not provide depolarization informa-tion, which is one of the key components for aerosol typing. As the atmosphere at La Palma was found to be more complex than initially anticipated, we present the benefits of including depolarization capability by using a conceptually similar Raman lidar system specifically designed for aerosol characterization. We present the results of a campaign focused on the determination of bioaerosol capabilities to act as cloud condensation nuclei and ice-nucleating particles in mixed-phase clouds, where depo-larization information was used to determine the thermodynamic phase of the cloud. Ključne besede: Cherenkov Telescope Array Observatory, Raman Lidar, atmospheric optical depth, aerosol characterization, Cumbre Vieja, Calima Objavljeno v RUNG: 23.10.2023; Ogledov: 1756; Prenosov: 50 Celotno besedilo (26,88 MB) |
7. Performance study update of observations in divergent mode for the Cherenkov Telescope ArrayA. Donini, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, objavljeni znanstveni prispevek na konferenci Opis: Due to the limited field of view (FoV) of Cherenkov telescopes, the time needed to achieve target sensitivity for surveys of the extragalactic and Galactic sky is large. To optimize the time spent to perform such surveys, a so-called “divergent mode” of the Cherenkov Telescope Array Observatory (CTAO) was proposed as an alternative observation strategy to the traditional parallel pointing. In the divergent mode, each telescope points to a position in the sky that is slightly offset, in the outward direction, from the original center of the field of view. This bring the advantage of increasing the total instantaneous arrays’ FoV. From an enlarged field of view also benefits the search for very-high-energy transient sources, making it possible to cover large sky regions in follow-up observations, or to quickly cover the probability sky map in case of Gamma Ray Bursts (GRB), Gravitational Waves (GW), and other transient events. In this contribution, we present the proposed implementation of the divergent pointing mode and its first preliminary performance estimation for the southern CTAO array. Ključne besede: Cherenkov Telescope Array, CTAO, divergent mode, very-high-energy transient sources Objavljeno v RUNG: 26.09.2023; Ogledov: 1588; Prenosov: 9 Celotno besedilo (554,96 KB) Gradivo ima več datotek! Več... |
8. Expected exclusion limits to TeV dark matter from the perseus cluster with the Cherenkov Telescope ArrayRémi Adam, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, objavljeni znanstveni prispevek na konferenci Opis: Clusters of galaxies are the largest gravitationally-bound structures in the Universe. They are composed of galaxies and gas (approximately 15% of the total mass) mostly dark matter (DM, accounts up to 85% of the total mass). If the DM is composed of Weakly Interacting Massive Particles (WIMPs), galaxy clusters represent one of the best targets to search for gamma-ray signals induced by the decay of WIMPs, with masses around the TeV scale. Due to its sensitivity and energy range of operation (from 20 GeV to 300 TeV), the Cherenkov Telescope Array (CTA) Observatory has a unique opportunity to test WIMPs with masses close to the unitarity limit. This will complement the searches for DM from other gamma-ray observatories as well as direct and collider experiments. The CTA Observatory is planning to search for gamma-ray emission, either its origin may be cosmic-ray (CR) or DM related, in the Perseus galaxy cluster during the first years of operation. In this poster, we will present the software created to perform the analysis using the ctools software and the corresponding results. Ključne besede: Cherenkov Telescope Array, CTA, dark matter, standard model, dwarf spheroidal galaxies Objavljeno v RUNG: 26.09.2023; Ogledov: 1611; Prenosov: 6 Celotno besedilo (1,33 MB) Gradivo ima več datotek! Več... |
9. Sensitivity of the Cherenkov Telescope Array to the gamma-ray emission from neutrino sources detected by IceCubeOlga Sergijenko, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, objavljeni znanstveni prispevek na konferenci Opis: Gamma-ray observations of the astrophysical neutrino sources are fundamentally important for understanding the underlying neutrino production mechanism. We investigate the Cherenkov Telescope Array (CTA) ability to detect the very-high-energy (VHE) gamma-ray counterparts to the neutrino-emitting Active Galaxies. The CTA performance under different configurations and array layouts is computed based on the neutrino and gamma-ray simulations of steady and transient types of sources, assuming that the neutrino events are detected with the IceCube neutrino telescope. The CTA detection probability is calculated for both CTA sites taking into account the visibility constraints. We find that, under optimal observing conditions, CTA could observe the VHE gamma-ray emission from at least 3 neutrino events per year. Ključne besede: Cherenkov Telescope Array, IceCube neutrino telescope, neutrinos, neutrino sources Objavljeno v RUNG: 26.09.2023; Ogledov: 2229; Prenosov: 9 Celotno besedilo (1,08 MB) Gradivo ima več datotek! Več... |
10. Variability studies of active galactic nuclei from the long-term monitoring program with the Cherenkov Telescope ArrayG. Grolleron, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, objavljeni znanstveni prispevek na konferenci Opis: Blazars are active galactic nuclei (AGN) with a relativistic jet oriented toward the observer. This jet is composed of accelerated particles which can display emission over the entire electromagnetic spectrum. Spectral variability has been observed on short- and long-time scales in AGN, with a power spectral density (PSD) that can show a break at frequencies below the well-known red-noise process. This break frequency in the PSD has been observed in X-rays to scale with the accretion regime and the mass of the central black hole. It is expected that a break could also be seen in the very-high-energy gamma rays, but constraining the shape of the PSD in these wavelengths has not been possible with the current instruments. The Cherenkov Telescope Array (CTA) will be more sensitive by a factor of five to ten depending on energy than the current generation of imaging atmospheric Cherenkov telescopes, therefore it will be possible with CTA to reconstruct the PSD with a high accuracy, bringing new information about AGN variability. In this work, we focus on the AGN long-term monitoring program planned with CTA. The program is proposed to begin with early-start observing campaigns with CTA precursors. This would allow us to probe longer time scales on the AGN PSD. Ključne besede: Cherenkov Telescope Array, CTA, dark matter, standard model, dwarf spheroidal galaxies Objavljeno v RUNG: 26.09.2023; Ogledov: 2041; Prenosov: 10 Celotno besedilo (3,48 MB) Gradivo ima več datotek! Več... |