Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Determining the Aethalometer multiple scattering enhancement factor C from the filter loading parameter
Luca Ferrero, Niccolò Losi, Martin Rigler, Asta Gregorič, C. Colombi, L. D'Angelo, E. Cuccia, A. M. Cefalì, I. Gini, A. Doldi, 2024, izvirni znanstveni članek

Opis: Light-absorbing aerosols heat the atmosphere; an accurate quantification of their absorption coefficient is mandatory. However, standard reference instruments (CAPS, MAAP, PAX, PTAAM) are not always available at each measuring site around the world. By integrating all previous published studies concerning the Aethalometers, the AE33 filter loading parameter, provided by the dual-spot algorithm, were used to determine the multiple scattering enhancement factor from the Aethalometer itself (hereinafter CAE) on an yearly and a monthly basis. The method was developed in Milan, where Aethalometer measurements were compared with MAAP data; the comparison showed a good agreement in terms of equivalent black carbon (R2 = 0.93; slope = 1.02 and a negligible intercept = 0.12 μg m−3) leading to a yearly experimental multiple scattering enhancement factor of 2.51 ± 0.04 (hereinafter CMAAP). On a yearly time base the CAE values obtained using the new approach was 2.52 ± 0.01, corresponding to the experimental one (CMAAP). Considering the seasonal behavior, higher experimental CMAAP and computed CAE values were found in summer (2.83 ± 0.12) whereas, the lower ones in winter/early-spring (2.37 ± 0.03), in agreement with the single scattering albedo behavior in the Po Valley. Overall, the agreement between the experimental CMAAP and CAE showed a root mean squared error (RMSE) of just 0.038 on the CMAAP prediction, characterized by a slope close to 1 (1.001 ± 0.178), a negligible intercept (−0.002 ± 0.455) and a high degree of correlation (R2 = 0.955). From an environmental point of view, the application of a dynamic (space/time) determination of CAE increases the accuracy of the aerosol heating rate (compared to applying a fixed C value) up to 16 % solely in Milan, and to 114 % when applied in the Arctic at 80°N.
Ključne besede: aethalometer, C factor, loading parameter, MAAP, heating rate
Objavljeno v RUNG: 02.02.2024; Ogledov: 620; Prenosov: 4
.pdf Celotno besedilo (3,18 MB)

2.
Anthropic settlementsʹ impact on the light-absorbing aerosol concentrations and heating rate in the arctic
Niccolò Losi, Piotr Markuszewski, Martin Rigler, Asta Gregorič, Griša Močnik, Violetta Drozdowska, Przemek Makuch, Tymon Zielinski, Paulina Pakszys, Małgorzata Kitowska, 2023, izvirni znanstveni članek

Opis: Light-absorbing aerosols (LAA) impact the atmosphere by heating it. Their effect in the Arctic was investigated during two summer Arctic oceanographic campaigns (2018 and 2019) around the Svalbard Archipelago in order to unravel the differences between the Arctic background and the local anthropic settlements. Therefore, the LAA heating rate (HR) was experimentally determined. Both the chemical composition and high-resolution measurements highlighted substantial differences between the Arctic Ocean background (average eBC concentration of 11.7 ± 0.1 ng/m3) and the human settlements, among which the most impacting appeared to be Tromsø and Isfjorden (mean eBC of 99.4 ± 3.1 ng/m3). Consequently, the HR in Isfjorden (8.2 × 10−3 ± 0.3 × 10−3 K/day) was one order of magnitude higher than in the pristine background conditions (0.8 × 10−3 ± 0.9 × 10−5 K/day). Therefore, we conclude that the direct climate impact of local LAA sources on the Arctic atmosphere is not negligible and may rise in the future due to ice retreat and enhanced marine traffic.
Ključne besede: light-absorbing aerosols, black carbon, climate change, heating rate
Objavljeno v RUNG: 21.12.2023; Ogledov: 774; Prenosov: 5
.pdf Celotno besedilo (3,57 MB)
Gradivo ima več datotek! Več...

3.
The impact of cloudiness and cloud type on the atmospheric heating rate of black and brown carbon in the Po Valley
Luca Ferrero, Asta Gregorič, Griša Močnik, Martin Rigler, Sergio Cogliati, Francesca Barnaba, Luca Di Liberto, Gian Paolo Gobbi, Niccolò Losi, Ezio Bolzacchini, 2021, izvirni znanstveni članek

Opis: We experimentally quantified the impact of cloud fraction and cloud type on the heating rate (HR) of black and brown carbon (HRBC and HRBrC). In particular, we examined in more detail the cloud effect on the HR detected in a previous study (Ferrero et al., 2018). High-time-resolution measurements of the aerosol absorption coefficient at multiple wavelengths were coupled with spectral measurements of the direct, diffuse and surface reflected irradiance and with lidar–ceilometer data during a field campaign in Milan, Po Valley (Italy). The experimental set-up allowed for a direct determination of the total HR (and its speciation: HRBC and HRBrC) in all-sky conditions (from clear-sky conditions to cloudy). The highest total HR values were found in the middle of winter (1.43 ± 0.05 K d−1), and the lowest were in spring (0.54 ± 0.02 K d−1). Overall, the HRBrC accounted for 13.7 ± 0.2 % of the total HR, with the BrC being characterized by an absorption Ångström exponent (AAE) of 3.49 ± 0.01. To investigate the role of clouds, sky conditions were classified in terms of cloudiness (fraction of the sky covered by clouds: oktas) and cloud type (stratus, St; cumulus, Cu; stratocumulus, Sc; altostratus, As; altocumulus, Ac; cirrus, Ci; and cirrocumulus–cirrostratus, Cc–Cs). During the campaign, clear-sky conditions were present 23 % of the time, with the remaining time (77 %) being characterized by cloudy conditions. The average cloudiness was 3.58 ± 0.04 oktas (highest in February at 4.56 ± 0.07 oktas and lowest in November at 2.91 ± 0.06 oktas). St clouds were mostly responsible for overcast conditions (7–8 oktas, frequency of 87 % and 96 %); Sc clouds dominated the intermediate cloudiness conditions (5–6 oktas, frequency of 47 % and 66 %); and the transition from Cc–Cs to Sc determined moderate cloudiness (3–4 oktas); finally, low cloudiness (1–2 oktas) was mostly dominated by Ci and Cu (frequency of 59 % and 40 %, respectively). HR measurements showed a constant decrease with increasing cloudiness of the atmosphere, enabling us to quantify for the first time the bias (in %) of the aerosol HR introduced by the simplified assumption of clear-sky conditions in radiative-transfer model calculations. Our results showed that the HR of light-absorbing aerosol was ∼ 20 %–30 % lower in low cloudiness (1–2 oktas) and up to 80 % lower in completely overcast conditions (i.e. 7–8 oktas) compared to clear-sky ones. This means that, in the simplified assumption of clear-sky conditions, the HR of light-absorbing aerosol can be largely overestimated (by 50 % in low cloudiness, 1–2 oktas, and up to 500 % in completely overcast conditions, 7–8 oktas). The impact of different cloud types on the HR was also investigated. Cirrus clouds were found to have a modest impact, decreasing the HRBC and HRBrC by −5 % at most. Cumulus clouds decreased the HRBC and HRBrC by −31 ± 12 % and −26 ± 7 %, respectively; cirrocumulus–cirrostratus clouds decreased the HRBC and HRBrC by −60 ± 8 % and −54 ± 4 %, which was comparable to the impact of altocumulus (−60 ± 6 % and −46 ± 4 %). A higher impact on the HRBC and HRBrC suppression was found for stratocumulus (−63 ± 6 % and −58 ± 4 %, respectively) and altostratus (−78 ± 5 % and −73 ± 4 %, respectively). The highest impact was associated with stratus, suppressing the HRBC and HRBrC by −85 ± 5 % and −83 ± 3 %, respectively. The presence of clouds caused a decrease of both the HRBC and HRBrC (normalized to the absorption coefficient of the respective species) of −11.8 ± 1.2 % and −12.6 ± 1.4 % per okta. This study highlights the need to take into account the role of both cloudiness and different cloud types when estimating the HR caused by both BC and BrC and in turn decrease the uncertainties associated with the quantification of their impact on the climate.
Ključne besede: black carbon, brown carbon, cloud, atmospheric heating rate, climate change
Objavljeno v RUNG: 29.03.2021; Ogledov: 2460; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.02 sek.
Na vrh