Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Analysis of exhaled breath to identify critically ill patients with ventilator-associated pneumonia
T. W. Felton, Waqar Ahmed, Iain R. White, Pouline M. van Oort, Nicholas J. W. Rattray, C. Docherty, Jonathan Bannard-Smith, J.B. Morton, Ingeborg Welters, R. McMullan, 2023, izvirni znanstveni članek

Opis: Ventilator-associated pneumonia commonly occurs in critically ill patients. Clinical suspicion results in overuse of antibiotics, which in turn promotes antimicrobial resistance. Detection of volatile organic compounds in the exhaled breath of critically ill patients might allow earlier detection of pneumonia and avoid unnecessary antibiotic prescription. We report a proof of concept study for non-invasive diagnosis of ventilator-associated pneumonia in intensive care (the BRAVo study). Mechanically ventilated critically ill patients commenced on antibiotics for clinical suspicion of ventilator-associated pneumonia were recruited within the first 24 h of treatment. Paired exhaled breath and respiratory tract samples were collected. Exhaled breath was captured on sorbent tubes and then analysed using thermal desorption gas chromatography–mass spectrometry to detect volatile organic compounds. Microbiological culture of a pathogenic bacteria in respiratory tract samples provided confirmation of ventilator-associated pneumonia. Univariable and multivariable analyses of volatile organic compounds were performed to identify potential biomarkers for a ‘rule-out’ test. Ninety-six participants were enrolled in the trial, with exhaled breath available from 92. Of all compounds tested, the four highest performing candidate biomarkers were benzene, cyclohexanone, pentanol and undecanal with area under the receiver operating characteristic curve ranging from 0.67 to 0.77 and negative predictive values from 85% to 88%. Identified volatile organic compounds in the exhaled breath of mechanically ventilated critically ill patients show promise as a useful non-invasive ‘rule-out’ test for ventilator-associated pneumonia.
Ključne besede: breath, diagnosis, ventilator-associated pneumonia
Objavljeno v RUNG: 05.04.2023; Ogledov: 1898; Prenosov: 18
.pdf Celotno besedilo (237,72 KB)
Gradivo ima več datotek! Več...

2.
Breath and plasma metabolomics to assess inflammation in acute stroke
Waqar Ahmed, Iain R. White, Maxim Wilkinson, Craig Johnson, Nicholas J. W. Rattray, Amit K. Kishore, Royston Goodacre, Craig J. Smith, Stephen J. Fowler, 2021, izvirni znanstveni članek

Opis: Inflammation is strongly implicated in both injury and repair processes occurring after stroke. In this exploratory study we assessed the feasibility of repeated sampling of exhaled volatile organic compounds and performed an untargeted metabolomic analysis of plasma collected at multiple time periods after stroke. Metabolic profiles were compared with the time course of the inflammatory markers C-reactive protein (CRP) and interleukin-6 (IL-6). Serial breath sampling was well-tolerated by all patients and the measurement appears feasible in this group. We found that exhaled decanal tracks CRP and IL-6 levels post-stroke and correlates with several metabolic pathways associated with a post-stroke inflammatory response. This suggests that measurement of breath and blood metabolites could facilitate development of novel therapeutic and diagnostic strategies. Results are discussed in relation to the utility of breath analysis in stroke care, such as in monitoring recovery and complications including stroke associated infection.
Ključne besede: stroke, metabolomics, breath, VOCs, inflammation
Objavljeno v RUNG: 18.11.2021; Ogledov: 2374; Prenosov: 63
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

3.
Untargeted molecular analysis of exhaled breath as a diagnostic test for ventilator-associated lower respiratory tract infections (BreathDx)
Pouline M. van Oort, Tamara M. E. Nijsen, Iain R. White, Hugo Knobel, Timothy Felton, Nicholas J. W. Rattray, Oluwasola Lawal, Murtaza Bulut, Waqar Ahmed, Antonio Artigas, 2021, drugi znanstveni članki

Opis: Patients suspected of ventilator-associated lower respiratory tract infections (VA-LRTIs) commonly receive broad-spectrum antimicrobial therapy unnecessarily. We tested whether exhaled breath analysis can discriminate between patients suspected of VA-LRTI with confirmed infection, from patients with negative cultures. Breath from 108 patients suspected of VA-LRTI was analysed by gas chromatography-mass spectrometry. The breath test had a sensitivity of 98% at a specificity of 49%, confirmed with a second analytical method. The breath test had a negative predictive value of 96% and excluded pneumonia in half of the patients with negative cultures. Trial registration number: UKCRN ID number 19086, registered May 2015.
Ključne besede: ventilator-associated pneumonia, breath analysis, volatile organic compounds, metabolomics, intensive care, hospital acquired infections
Objavljeno v RUNG: 07.09.2021; Ogledov: 5068; Prenosov: 0
Gradivo ima več datotek! Več...

4.
Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty
Nicholas Rattray, Drupad Trivedi, Yun Xu, Tarani Chandola, Caroline Johnson, Alan Marshall, Krisztina Mekli, Zahra Rattray, Gindo Tampubolon, Bram Vanhoutte, Iain R. White, Frederick Wu, Neil Pendleton, James Nazroo, Royston Goodacre, 2019, izvirni znanstveni članek

Opis: Global ageing poses a substantial economic burden on health and social care costs. Enabling a greater proportion of older people to stay healthy for longer is key to the future sustainability of health, social and economic policy. Frailty and associated decrease in resilience plays a central role in poor health in later life. In this study, we present a population level assessment of the metabolic phenotype associated with frailty. Analysis of serum from 1191 older individuals (aged between 56 and 84 years old) and subsequent longitudinal validation (on 786 subjects) was carried out using liquid and gas chromatography-mass spectrometry metabolomics and stratified across a frailty index designed to quantitatively summarize vulnerability. Through multivariate regression and network modelling and mROC modeling we identified 12 significant metabolites (including three tocotrienols and six carnitines) that differentiate frail and non-frail phenotypes. Our study provides evidence that the dysregulation of carnitine shuttle and vitamin E pathways play a role in the risk of frailty.
Ključne besede: metabolomics, frailty, ageing, LC-MS, serum
Objavljeno v RUNG: 08.11.2019; Ogledov: 4056; Prenosov: 92
.pdf Celotno besedilo (2,35 MB)

Iskanje izvedeno v 0.02 sek.
Na vrh