Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Emission of volatile organic compounds from residential biomass burning and their rapid chemical transformations
Maximillien Desservettaz, Michael Pikridas, Iasonas Stavroulas, Aikaterini Bougiatioti, Eleni Liakakou, Nikolaos Hatzianastassiou, Jean Sciare, Nikolaos Mihalopoulos, Efstratios Bourtsoukidis, 2023, izvirni znanstveni članek

Opis: Biomass combustion releases a complex array of Volatile Organic Compounds (VOCs) that pose significant challenges to air quality and human health. Although biomass burning has been extensively studied at ecosystem levels, understanding the atmospheric transformation and impact on air quality of emissions in urban environments remains challenging due to complex sources and burning materials. In this study, we investigate the VOC emission rates and atmospheric chemical processing of predominantly wood burning emissions in a small urban centre in Greece. Ioannina is situated in a valley within the Dinaric Alps and experiences intense atmospheric pollution accumulation during winter due to its topography and high wood burning activity. During pollution event days, the ambient mixing ratios of key VOC species were found to be similar to those reported for major urban centres worldwide. Positive matrix factorisation (PMF) analysis revealed that biomass burning was the dominant emission source (>50 %), representing two thirds of OH reactivity, which indicates a highly reactive atmospheric mixture. Calculated OH reactivity ranges from 5 s−1 to an unprecedented 278 s−1, and averages at 93 ± 66 s−1 at 9 PM, indicating the presence of exceptionally reactive VOCs. The highly pronounced photochemical formation of organic acids coincided with the formation of ozone, highlighting the significance of secondary formation of pollutants in poorly ventilated urban areas. Our findings underscore the pressing need to transition from wood burning to environmentally friendly sources of energy in poorly ventilated urban areas, in order to improve air quality and safeguard public health.
Ključne besede: biomass burning, urban air quality, VOCs, emission factors, source apportionment
Objavljeno v RUNG: 13.05.2024; Ogledov: 317; Prenosov: 1
.pdf Celotno besedilo (8,93 MB)

Field evaluation of low-cost PM sensors (Purple Air PA-II) under variable urban air quality conditions, in Greece
Iasonas Stavroulas, Georgios Grivas, Panagiotis Michalopoulos, Eleni Liakakou, Aikaterini Bougiatioti, Panayiotis Kalkavouras, Kyriaki Maria Fameli, Nikolaos Hatzianastassiou, Nikolaos Mihalopoulos, Evangelos Gerasopoulos, 2020, izvirni znanstveni članek

Opis: Recent advances in particle sensor technologies have led to an increased development and utilization of low-cost, compact, particulate matter (PM) monitors. These devices can be deployed in dense monitoring networks, enabling an improved characterization of the spatiotemporal variability in ambient levels and exposure. However, the reliability of their measurements is an important prerequisite, necessitating rigorous performance evaluation and calibration in comparison to reference-grade instrumentation. In this study, field evaluation of Purple Air PA-II devices (low-cost PM sensors) is performed in two urban environments and across three seasons in Greece, in comparison to different types of reference instruments. Measurements were conducted in Athens (the largest city in Greece with nearly four-million inhabitants) for five months spanning over the summer of 2019 and winter/spring of 2020 and in Ioannina, a medium-sized city in northwestern Greece (100,000 inhabitants) during winter/spring 2019–2020. The PM2.5 sensor output correlates strongly with reference measurements (R2 = 0.87 against a beta attenuation monitor and R2 = 0.98 against an optical reference-grade monitor). Deviations in the sensor-reference agreement are identified as mainly related to elevated coarse particle concentrations and high ambient relative humidity. Simple and multiple regression models are tested to compensate for these biases, drastically improving the sensor’s response. Large decreases in sensor error are observed after implementation of models, leading to mean absolute percentage errors of 0.18 and 0.12 for the Athens and Ioannina datasets, respectively. Overall, a quality-controlled and robustly evaluated low-cost network can be an integral component for air quality monitoring in a smart city. Case studies are presented along this line, where a network of PA-II devices is used to monitor the air quality deterioration during a peri-urban forest fire event affecting the area of Athens and during extreme wintertime smog events in Ioannina, related to wood burning for residential heating.
Ključne besede: particulate matter, PM2.5, air quality, low-cost sensors, optical particle counter
Objavljeno v RUNG: 10.05.2024; Ogledov: 275; Prenosov: 3
URL Povezava na datoteko
Gradivo ima več datotek! Več...

Carbonaceous aerosols in contrasting atmospheric environments in Greek cities : evaluation of the EC-tracer methods for secondary organic carbon estimation
Dimitris G. Kaskaoutis, Georgios Grivas, Christina Theodosi, M. Tsagkaraki, D. Paraskevopoulou, Iasonas Stavroulas, Eleni Liakakou, Antonis Gkikas, Nikolaos Hatzianastassiou, Cheng Wu, 2020, izvirni znanstveni članek

Opis: This study examines the carbonaceous-aerosol characteristics at three contrasting urban environments in Greece (Ioannina, Athens, and Heraklion), on the basis of 12 h sampling during winter (January to February 2013), aiming to explore the inter-site differences in atmospheric composition and carbonaceous-aerosol characteristics and sources. The winter-average organic carbon (OC) and elemental carbon (EC) concentrations in Ioannina were found to be 28.50 and 4.33 µg m−3, respectively, much higher than those in Heraklion (3.86 µg m−3 for OC and 2.29 µg m−3 for EC) and Athens (7.63 µg m−3 for OC and 2.44 µg m−3 for EC). The winter OC/EC ratio in Ioannina (6.53) was found to be almost three times that in Heraklion (2.03), indicating a larger impact of wood combustion, especially during the night, whereas in Heraklion, emissions from biomass burning were found to be less intense. Estimations of primary and secondary organic carbon (POC and SOC) using the EC-tracer method, and specifically its minimum R-squared (MRS) variant, revealed large differences between the sites, with a prevalence of POC (67–80%) in Ioannina and Athens and with a larger SOC fraction (53%) in Heraklion. SOC estimates were also obtained using the 5% and 25% percentiles of the OC/EC data to determine the (OC/EC)pri, leading to results contrasting to the MRS approach in Ioannina (70–74% for SOC). Although the MRS method provides generally more robust results, it may significantly underestimate SOC levels in environments highly burdened by biomass burning, as the fast-oxidized semi-volatile OC associated with combustion sources is classified in POC. Further analysis in Athens revealed that the difference in SOC estimates between the 5% percentile and MRS methods coincided with the semi-volatile oxygenated organic aerosol as quantified by aerosol mass spectrometry. Finally, the OC/Kbb+ ratio was used as tracer for decomposition of the POC into fossil-fuel and biomass-burning components, indicating the prevalence of biomass-burning POC, especially in Ioannina (77%).
Ključne besede: carbonaceous aerosols, inorganic species, POC-SOC estimation, biomass burning, MRS method, Greece
Objavljeno v RUNG: 10.05.2024; Ogledov: 257; Prenosov: 3
.pdf Celotno besedilo (2,64 MB)
Gradivo ima več datotek! Več...

Intra- and inter-city variability of ▫$PM_2.5$▫ concentrations in Greece as determined with a low-cost sensor network
Konstantinos Dimitriou, Iasonas Stavroulas, Georgios Grivas, Charalampos Chatzidiakos, Georgios Kosmopoulos, Andreas Kazantzidis, Konstantinos Kourtidis, Athanasios Karagioras, Nikolaos Hatzianastassiou, Spyros N. Pandis, 2023, izvirni znanstveni članek

Opis: Measurements of PM2.5 concentrations in five major Greek cities over a two-year period using calibrated low-cost sensor-based particulate matter (PM) monitors (Purple Air PA-II) were combined with local meteorological parameters, synoptic patterns and air mass residence time models to investigate the factors controlling PM2.5 spatiotemporal variability over continental Greece. Fourteen sensors nodes in Athens, Patras, Ioannina, Xanthi, and Thermi (in the Metropolitan Area of Thessaloniki) were selected out of more than 100 of a countrywide network for detailed analysis. The cities have populations ranging from 65k to 3M inhabitants and cover different latitudes along the South-North axis. High correlations between the daily average PM2.5 levels were observed among all sites, indicating strong intra- and inter-city covariance of concentrations, both in cold and warm periods. Higher PM2.5 concentrations in all cities during the cold period were primarily associated with low temperatures and stagnant anticyclonic conditions, favoring the entrapment of residential heating emissions from biomass burning. Anticyclonic conditions were also connected to an increased frequency of PM2.5 episodes, exceeding the updated daily guideline value (15 μg m−3) of the World Health Organization (WHO). During the warm period, nearly uniform PM2.5 levels were encountered across continental Greece, independently of their population size. This uniformity strongly suggests the importance of long-range transport and regional secondary aerosol formation for PM2.5 during this period. Peak concentrations were associated mainly with regional northern air flows over Greece and the Balkan Peninsula. The use of the measurements from dense air quality sensor networks, provided that a robust calibration protocol and continuous data quality assurance practices are followed, appears to be an efficient tool to gain insights on the levels and variability of PM2.5 concentrations, underpinning the characterization of spatial and seasonal particularities and supporting real-time public information and warning.
Ključne besede: particulate matter, PM2.5, biomass burning, low-cost sensors, purple air PA-II, concentration weighted trajectory, potential source contribution function
Objavljeno v RUNG: 10.05.2024; Ogledov: 277; Prenosov: 2
URL Povezava na datoteko
Gradivo ima več datotek! Več...

Vertical profiling of fresh biomass burning aerosol optical properties over the Greek urban city of Ioannina, during the PANACEA winter campaign
Christina-Anna Papanikolaou, Alexandros Papayannis, M. Mylonaki, Romanos Foskinis, Panagiotis Kokkalis, Eleni Liakakou, Iasonas Stavroulas, O. Soupiona, Nikolaos Hatzianastassiou, Maria Gavrouzou, 2022, izvirni znanstveni članek

Opis: Vertical profiling of aerosol particles was performed during the PANhellenic infrastructure for Atmospheric Composition and climatE chAnge (PANACEA) winter campaign (10 January 2020–7 February 2020) over the city of Ioannina, Greece (39.65° N, 20.85° E, 500 m a.s.l.). The middle-sized city of Ioannina suffers from wintertime air pollution episodes due to biomass burning (BB) domestic heating activities. The lidar technique was applied during the PANACEA winter campaign on Ioannina city, to fill the gap of knowledge of the spatio-temporal evolution of the vertical mixing of the particles occurring during these winter-time air pollution episodes. During this campaign the mobile single-wavelength (532 nm) depolarization Aerosol lIdAr System (AIAS) was used to measure the spatio-temporal evolution of the aerosols’ vertical profiles within the Planetary Boundary Layer (PBL) and the lower free troposphere (LFT; up to 4 km height a.s.l.). AIAS performed almost continuous lidar measurements from morning to late evening hours (typically from 07:00 to 19:00 UTC), under cloud-free conditions, to provide the vertical profiles of the aerosol backscatter coefficient (baer) and the particle linear depolarization ratio (PLDR), both at 532 nm. In this study we emphasized on the vertical profiling of very fresh (~hours) biomass burning (BB) particles originating from local domestic heating activities in the area. In total, 33 out of 34 aerosol layers in the lower free troposphere were characterized as fresh biomass burning ones of local origin, showing a mean particle linear depolarization value of 0.04 ± 0.02 with a range of 0.01 to 0.09 (532 nm) in a height region 1.21–2.23 km a.s.l. To corroborate our findings, we used in situ data, particulate matter (PM) concentrations (PM2.5) from a particulate sensor located close to our station, and the total black carbon (BC) concentrations along with the respective contribution of the fossil fuel (BCff) and biomass/wood burning (BCwb) from the Aethalometer. The PM2.5 mass concentrations ranged from 5.6 to 175.7 μg/m3, while the wood burning emissions from residential heating were increasing during the evening hours, with decreasing temperatures. The BCwb concentrations ranged from 0.5 to 17.5 μg/m3, with an extremely high mean contribution of BCwb equal to 85.4%, which in some cases during night-time reached up to 100% during the studied period.
Ključne besede: lidar, depolarization ratio, fresh biomass burning aerosols, domestic heating, black carbon, PM2.5
Objavljeno v RUNG: 10.05.2024; Ogledov: 283; Prenosov: 3
.pdf Celotno besedilo (6,36 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.03 sek.
Na vrh