1. Probing Iceland's dust-emitting sediments: : particle size distribution, mineralogy, cohesion, Fe mode of occurrence, and reflectance spectra signaturesAdolfo Gonzalez-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andrés Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, 2024, izvirni znanstveni članek Opis: Abstract. Characterising the physico-chemical properties of dust-emitting sediments in arid regions is fundamental to understanding the effects of dust on climate and ecosystems. However, knowledge regarding high-latitude dust (HLD) remains limited. This study focuses on analysing the particle size distribution (PSD), mineralogy, cohesion, iron (Fe) mode of occurrence, and visible–near infrared (VNIR) reflectance spectra of dust-emitting sediments from dust hotspots in Iceland (HLD region). Extensive analysis was conducted on samples of top sediments, sediments, and aeolian ripples collected from seven dust sources, with particular emphasis on the Jökulsá basin, encompassing the desert of Dyngjunsandur. Both fully and minimally dispersed PSDs and their respective mass median particle diameters revealed remarkable similarities (56 ± 69 and 55 ± 62 µm, respectively). Mineralogical analyses indicated the prevalence of amorphous phases (68 ± 26 %), feldspars (17 ± 13 %), and pyroxenes (9.3 ± 7.2 %), consistent with thorough analyses of VNIR reflectance spectra. The Fe content reached 9.5 ± 0.40 wt %, predominantly within silicate structures (80 ± 6.3 %), complemented by magnetite (16 ± 5.5 %), hematite/goethite (4.5 ± 2.7 %), and readily exchangeable Fe ions or Fe nano-oxides (1.6 ± 0.63 %). Icelandic top sediments exhibited coarser PSDs compared to the high dust-emitting crusts from mid-latitude arid regions, distinctive mineralogy, and a 3-fold bulk Fe content, with a significant presence of magnetite. The congruence between fully and minimally dispersed PSDs underscores reduced particle aggregation and cohesion of Icelandic top sediments, suggesting that aerodynamic entrainment of dust could also play a role upon emission in this region, alongside saltation bombardment. The extensive analysis in Dyngjusandur enabled the development of a conceptual model to encapsulate Iceland's rapidly evolving high dust-emitting environments. Ključne besede: mineral dust, high-latitude dust, Icelandic dust, aerosol particles Objavljeno v RUNG: 29.11.2024; Ogledov: 179; Prenosov: 0 Celotno besedilo (13,19 MB) Gradivo ima več datotek! Več... |
2. Characterization of the particle size distribution, mineralogy, and Fe mode of occurrence of dust-emitting sediments from the Mojave Desert, California, USAAdolfo Gonzalez-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andrés Alastuey, Natalia Jiménez-Moreno, Melani Hernández-Chiriboga, Konrad Kandler, Martina Klose, 2024, izvirni znanstveni članek Opis: Abstract. Constraining dust models to understand and quantify the effect of dust upon climate and ecosystems requires comprehensive analyses of the physiochemical properties of dust-emitting sediments in arid regions. Building upon previous studies in the Moroccan Sahara and Iceland, we analyse a diverse set of crusts and aeolian ripples (n=55) from various potential dust-emitting basins within the Mojave Desert, California, USA. Our focus is on characterizing the particle size distribution (PSD), mineralogy, aggregation/cohesion state, and Fe mode of occurrence. Our results show differences in fully and minimally dispersed PSDs, with crusts exhibiting average median diameters of 92 and 37 µm, respectively, compared to aeolian ripples with 226 and 213 µm, respectively. Mineralogical analyses unveiled strong variations between crusts and ripples, with crusts being enriched in phyllosilicates (24 % vs. 7.8 %), carbonates (6.6 % vs. 1.1 %), Na salts (7.3 % vs. 1.1 %), and zeolites (1.2 % and 0.12 %) and ripples being enriched in feldspars (48 % vs. 37 %), quartz (32 % vs. 16 %), and gypsum (4.7 % vs. 3.1 %). The size fractions from crust sediments display a homogeneous mineralogy, whereas those of aeolian ripples display more heterogeneity, mostly due to different particle aggregation. Bulk Fe content analyses indicate higher concentrations in crusts (3.0 ± 1.3 wt %) compared to ripples (1.9 ± 1.1 wt %), with similar proportions in their Fe mode of occurrence: nano-sized Fe oxides and readily exchangeable Fe represent ∼1.6 %, hematite and goethite ∼15 %, magnetite/maghemite ∼2.0 %, and structural Fe in silicates ∼80 % of the total Fe. We identified segregation patterns in the PSD and mineralogy differences in Na salt content within the Mojave basins, which can be explained by sediment transportation dynamics and precipitates due to groundwater table fluctuations described in previous studies in the region. Mojave Desert crusts show similarities with previously sampled crusts in the Moroccan Sahara in terms of the PSD and readily exchangeable Fe yet exhibit substantial differences in mineralogical composition, which should significantly influence the characteristic of the emitted dust particles. Ključne besede: mineral dust, iron oxides Objavljeno v RUNG: 29.11.2024; Ogledov: 186; Prenosov: 0 Celotno besedilo (10,28 MB) Gradivo ima več datotek! Več... |
3. Oxidative potential of particulate matter and its association to respiratory health endpoints in high-altitude cities in BoliviaLucille Borlaza-Lacoste, Valeria Mardoñez, Anouk Marsal, Ian Hough, Thuy Vy Dinh Ngoc, Pamela Dominutti, Jean-Luc Jaffrezo, Andrés Alastuey, Jean-Luc Besombes, Griša Močnik, 2024, izvirni znanstveni članek Ključne besede: particulate matter, oxidative potential, respiratory health, Bolivia, source apportionment, Positive matrix factorization, Poisson regression Objavljeno v RUNG: 22.05.2024; Ogledov: 1100; Prenosov: 1 Povezava na datoteko Gradivo ima več datotek! Več... |
4. Insights into the single-particle composition, size, mixing state, and aspect ratio of freshly emitted mineral dust from field measurements in the Moroccan Sahara using electron microscopyAgnesh Panta, Konrad Kandler, Andrés Alastuey, Cristina González-Flórez, Adolfo Gonzalez-Romero, Martina Klose, Xavier Querol, Cristina Reche, Jesús Yus-Díez, Carlos Pérez García-Pando, 2023, izvirni znanstveni članek Opis: Abstract. The chemical and morphological properties of mineral dust aerosols emitted by wind erosion from arid and semi-arid regions influence climate, ocean, and land ecosystems; air quality; and multiple socio-economic sectors. However, there is an incomplete understanding of the emitted dust particle size distribution (PSD) in terms of its constituent minerals that typically result from the fragmentation of soil aggregates during wind erosion. The emitted dust PSD affects the duration of particle transport and thus each mineral's global distribution, along with its specific effect upon climate. This lack of understanding is largely due to the scarcity of relevant in situ measurements in dust sources. To advance our understanding of the physicochemical properties of the emitted dust PSD, we present insights into the elemental composition and morphology of individual dust particles collected during the FRontiers in dust minerAloGical coMposition and its Effects upoN climaTe (FRAGMENT) field campaign in the Moroccan Sahara in September 2019. We analyzed more than 300 000 freshly emitted individual particles by performing offline analysis in the laboratory using scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectrometry (EDX). Eight major particle-type classes were identified with clay minerals making up the majority of the analyzed particles both by number and mass, followed by quartz, whereas carbonates and feldspar contributed to a lesser extent. We provide an exhaustive analysis of the PSD and potential mixing state of different particle types, focusing largely on iron-rich (Fe oxide-hydroxides) and feldspar particles, which are key to the effects of dust upon radiation and clouds, respectively. Nearly pure or externally mixed Fe oxide-hydroxides are present mostly in diameters smaller than 2 µm, with the highest fraction below 1 µm at about 3.75 % abundance by mass. Fe oxide-hydroxides tend to be increasingly internally mixed with other minerals, especially clays, as particle size increases; i.e., the volume fraction of Fe oxide-hydroxides in aggregates decreases with particle size. Pure (externally mixed) feldspar represented 3.2 % of all the particles by mass, of which we estimated about a 10th to be K-feldspar. The externally mixed total feldspar and K-feldspar abundances are relatively invariant with particle size, in contrast to the increasing abundance of feldspar-like (internally mixed) aggregates with particle size with mass fractions ranging from 5 % to 18 %. We also found that overall the median aspect ratio is rather constant across particle size and mineral groups, although we obtain slightly higher aspect ratios for internally mixed particles. The detailed information on the composition of freshly emitted individual dust particles and quantitative analysis of their mixing state presented here can be used to constrain climate models including mineral species in their representation of the dust cycle. Ključne besede: mineral dust, Moroccan Sahara, electron microscopy Objavljeno v RUNG: 13.05.2024; Ogledov: 1052; Prenosov: 8 Celotno besedilo (7,13 MB) Gradivo ima več datotek! Več... |
5. Uncertainties in source allocation of carbonaceous aerosols in a Mediterranean regionHector Navarro-Barboza, Marco Pandolfi, Marc Guevara, Santiago Enciso, Carles Tena, Marta Via, Jesús Yus-Díez, Cristina Reche, Noemí Perez, Andrés Alastuey, 2024, izvirni znanstveni članek Ključne besede: carbonaceous aerosol, organic aerosol Objavljeno v RUNG: 10.05.2024; Ogledov: 1044; Prenosov: 3 Celotno besedilo (8,09 MB) |
6. Compositional changes of ▫$PM_2.5$▫ in NE Spain during 2009–2018 : a trend analysis of the chemical composition and source apportionmentMarten in 't Veld, Andrés Alastuey, Marco Pandolfi, Fulvio Amato, Noemí Perez, Cristina Reche, Marta Via, Maria Cruz Minguillon, Miguel Escudero, Xavier Querol, 2021, izvirni znanstveni članek Ključne besede: PM2.5, aerosol, source apportionment Objavljeno v RUNG: 10.05.2024; Ogledov: 992; Prenosov: 3 Celotno besedilo (3,62 MB) |
7. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemicAurelio Tobías, Cristina Carnerero, Jordi Massagué, Marta Via, Maria Cruz Minguillon, Andrés Alastuey, Xavier Querol, 2020, izvirni znanstveni članek Ključne besede: covid, aerosol, traffic, PM Objavljeno v RUNG: 10.05.2024; Ogledov: 858; Prenosov: 0 Gradivo ima več datotek! Več... |
8. Absorption enhancement of black carbon particles in a Mediterranean city and countryside : effect of particulate matter chemistry, ageing and trend analysisJesús Yus-Díez, Marta Via, Andrés Alastuey, Angeliki Karanasiou, Maria Cruz Minguillon, Noemí Perez, Xavier Querol, Cristina Reche, Matic Ivančič, Martin Rigler, 2022, izvirni znanstveni članek Opis: Abstract. Black carbon (BC) is recognized as the most important warming agent among atmospheric aerosol particles. The absorption efficiency of pure BC is rather well-known, nevertheless the mixing of BC with other aerosol particles can enhance the BC light absorption efficiency, thus directly affecting Earth's radiative balance. The effects on climate of the BC absorption enhancement due to the mixing with these aerosols are not yet well constrained because these effects depend on the availability of material for mixing with BC, thus creating regional variations. Here we present the mass absorption cross-section (MAC) and absorption enhancement of BC particles (Eabs), at different wavelengths (from 370 to 880 nm for online measurements and at 637 nm for offline measurements) measured at two sites in the western Mediterranean, namely Barcelona (BCN; urban background) and Montseny (MSY; regional background). The Eabs values ranged between 1.24 and 1.51 at the urban station, depending on the season and wavelength used as well as on the pure BC MAC used as a reference. The largest contribution to Eabs was due to the internal mixing of BC particles with other aerosol compounds, on average between a 91 % and a 100 % at 370 and 880 nm, respectively. Additionally, 14.5 % and 4.6 % of the total enhancement at the short ultraviolet (UV) wavelength (370 nm) was due to externally mixed brown carbon (BrC) particles during the cold and the warm period, respectively. On average, at the MSY station, a higher Eabs value was observed (1.83 at 637 nm) compared to BCN (1.37 at 637 nm), which was associated with the higher fraction of organic aerosols (OA) available for BC coating at the regional station, as denoted by the higher organic carbon to elemental carbon (OC:EC) ratio observed at MSY compared to BCN. At both BCN and MSY, Eabs showed an exponential increase with the amount of non-refractory (NR) material available for coating (RNR-PM). The Eabs at 637 nm at the MSY regional station reached values up to 3 during episodes with high RNR-PM, whereas in BCN, Eabs kept values lower than 2 due to the lower relative amount of coating materials measured at BCN compared to MSY. The main sources of OA influencing Eabs throughout the year were hydrocarbon OA (HOA) and cooking-related OA (COA), i.e. primary OA (POA) from traffic and cooking emissions, respectively, at both 370 and 880 nm. At the short UV wavelength (370 nm), a strong contribution to Eabs from biomass burning OA (BBOA) and less oxidized oxygenated OA (LO-OOA) sources was observed in the colder period. Moreover, we found an increase of Eabs with the ageing state of the particles, especially during the colder period. This increase of Eabs with particle ageing was associated with a larger relative amount of secondary OA (SOA) compared to POA. The availability of a long dataset at both stations from offline measurements enabled a decade-long trend analysis of Eabs at 637 nm, that showed statistically significant (s.s.) positive trends of Eabs during the warmer months at the MSY station. This s.s. positive trend in MSY mirrored the observed increase of the OC:EC ratio over time. Moreover, in BCN during the COVID-19 lockdown period in spring 2020 we observed a sharp increase of Eabs due to the observed sharp increase of the OC:EC ratio. Our results show similar values of Eabs to those found in the literature for similar background stations. Ključne besede: black carbomn, coating, organic aerosol, light absorption Objavljeno v RUNG: 10.05.2024; Ogledov: 1016; Prenosov: 5 Celotno besedilo (2,74 MB) Gradivo ima več datotek! Več... |
9. Increase in secondary organic aerosol in an urban environment : Increase in secondary organic aerosol in an urban environmentMarta Via, Maria Cruz Minguillon, Cristina Reche, Xavier Querol, Andrés Alastuey, 2021, izvirni znanstveni članek Opis: The evolution of fine aerosol (PM1) species as well as the contribution of potential sources to the total organic aerosol (OA) at an urban background site in Barcelona, in the western Mediterranean basin (WMB) was investigated. For this purpose, a quadrupole aerosol chemical speciation monitor (Q-ACSM) was deployed to acquire real-time measurements for two 1-year periods: May 2014–May 2015 (period A) and September 2017–October 2018 (period B). Total PM1 concentrations showed a slight decrease (from 10.1 to 9.6 μgm�3 from A to B), although the relative contribution of inorganic and organic compounds varied significantly. Regarding inorganic compounds, SO42- , black carbon(BC) and NH4+ showed a significant decrease from period
A to B (21 %, 18% and 9 %, respectively), whilst NO3- concentrations were higher in B (8 %). Source apportionment
revealed OA contained 46% and 70% secondary OA (SOA) in periods A and B, respectively. Two secondary oxygenated OA sources (OOA) were differentiated by their oxidation status (i.e. ageing): less oxidized (LO-OOA) and more oxidized (MO-OOA). Disregarding winter periods, when LO-OOA production was not favoured, LO-OOA transformation into MO-OOA was found to be more effective in
period B. The lowest LO-OOA-to-MO-OOA ratio, excluding winter, was in September–October 2018 (0.65), implying an accumulation of aged OA after the high temperature and solar radiation conditions in the summer season. In addition to temperature, SOA (sum of OOA factors) was enhanced by exposure to NOx-polluted ambient and other pollutants, especially to O3 and during afternoon hours. The anthropogenic primary OA sources identified, cooking-related
OA (COA), hydrocarbon-like OA (HOA), and biomass burning OA (BBOA), decreased from period A to B in both absolute concentrations and relative contribution (as a whole, 44% and 30 %, respectively). However, their concentrations and proportion to OA grew rapidly during highly polluted episodes. The influence of certain atmospheric episodes on OA sources was also assessed. Both SOA factors were boosted with long- and medium-range circulations, especially those coming from inland Europe and the Mediterranean (triggering mainly MO-OOA) and summer breeze-driven regional circulation (mainly LO-OOA). In contrast, POA was
enhanced either during air-renewal episodes or stagnation anticyclonic events. Ključne besede: aerosol, organic aerosol, source apportionment, PM1, particulate matter Objavljeno v RUNG: 10.05.2024; Ogledov: 1163; Prenosov: 6 Celotno besedilo (4,93 MB) Gradivo ima več datotek! Več... |
10. Variability in sediment particle size, mineralogy, and Fe mode of occurrence across dust-source inland drainage basins : the case of the lower Drâa Valley, MoroccoAdolfo Gonzalez-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Cristina Reche, Patricia Córdoba, Natalia Moreno, Andrés Alastuey, Konrad Kandler, Martina Klose, 2023, izvirni znanstveni članek Opis: The effects of desert dust upon climate and ecosystems depend strongly on its particle size and size-resolved mineralogical composition. However, there is very limited quantitative knowledge on the particle size and composition of the parent sediments along with their variability within dust-source regions, particularly in dust emission hotspots. The lower Drâa Valley, an inland drainage basin and dust hotspot region located in the Moroccan Sahara, was chosen for a comprehensive analysis of sediment particle size and mineralogy. Different sediment type samples (n= 42) were collected, including paleo-sediments, paved surfaces, crusts, and dunes, and analysed for particle-size distribution (minimally and fully dispersed samples) and mineralogy. Furthermore, Fe sequential wet extraction was carried out to characterise the modes of occurrence of Fe, including Fe in Fe (oxyhydr)oxides, mainly from goethite and hematite, which are key to dust radiative effects; the poorly crystalline pool of Fe (readily exchangeable ionic Fe and Fe in nano-Fe oxides), relevant to dust impacts upon ocean biogeochemistry; and structural Fe. Results yield a conceptual model where both particle size and mineralogy are segregated by transport and deposition of sediments during runoff of water across the basin and by the precipitation of salts, which causes a sedimentary fractionation. The proportion of coarser particles enriched in quartz is higher in the highlands, while that of finer particles rich in clay, carbonates, and Fe oxides is higher in the lowland dust emission hotspots. There, when water ponds and evaporates, secondary carbonates and salts precipitate, and the clays are enriched in readily exchangeable ionic Fe, due to sorption of dissolved Fe by illite. The results differ from currently available mineralogical atlases and highlight the need for observationally constrained global high-resolution mineralogical data for mineral-speciated dust modelling. The dataset obtained represents an important resource for future evaluation of surface mineralogy retrievals from spaceborne spectroscopy. Ključne besede: mineral dust, aerosols, geology Objavljeno v RUNG: 12.01.2024; Ogledov: 1918; Prenosov: 5 Celotno besedilo (7,63 MB) Gradivo ima več datotek! Več... |