1. |
2. |
3. |
4. Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova RemnantsMiha Živec, Marko Zavrtanik, Danilo Zavrtanik, Gabrijela Zaharijas, Serguei Vorobiov, Veronika Vodeb, Samo Stanič, Saptashwa Bhattacharyya, Fabio Acero, 2023, izvirni znanstveni članek Najdeno v: osebi Ključne besede: gamma-rays, cosmic rays, Galactic PeVatrons, Galactic supernova
remnants, Cherenkov Telescope Array Objavljeno: 14.04.2023; Ogledov: 167; Prenosov: 0
Polno besedilo (6,49 MB) |
5. |
6. |
7. Localisation and classification of gamma ray sources using neural networksGuõlaugur Jóhannesson, Roberto Ruiz de Austri, Gabrijela Zaharijas, Sascha Caron, Boris Panes, Saptashwa Bhattacharyya, Chris van den Oetelaar, 2021, objavljeni znanstveni prispevek na konferenci Opis: With limited statistics and spatial resolution of current detectors, accurately localising and separating gamma-ray point sources from the dominating interstellar emission in the GeV energy range is challenging. Motivated by the challenges of the traditional methods used for the gamma-ray source detection, here we demonstrate the application of deep learning based algorithms to automatically detect and classify point sources, which can be applied directly to the binned Fermi-LAT data and potentially be generalised to other wavelengths. For the point source detection task, we use popular deep neural network structure U-NET, together with image segmentation, for precise localisation of sources, various clustering algorithms were tested on the segmented images. The training samples are based on the source properties of AGNs and PSRs from the latest Fermi-LAT source catalog, in addition to the background interstellar emission. Finally, we have created a more
complex but robust training data generation exploiting full detector potential, increasing spatial resolution at the highest energies. Najdeno v: osebi Ključne besede: gamma-rays, deep learning, computer vision Objavljeno: 01.10.2021; Ogledov: 1056; Prenosov: 38
Polno besedilo (0,00 KB) Gradivo ima več datotek! Več...
|