Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 6 / 6
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
2.
Decaying fermionic dark matter search with CALET
Saptashwa Bhattacharyya, 2017, izvirni znanstveni članek

Najdeno v: osebi
Ključne besede: cosmic rays detectors, dark matter detectors, dark matter simulations
Objavljeno: 06.01.2021; Ogledov: 985; Prenosov: 0
.pdf Polno besedilo (4,84 MB)

3.
An interpretation of the cosmic ray e + + e − spectrum from 10 GeV to 3 TeV measured by CALET on the ISS
Saptashwa Bhattacharyya, 2019, izvirni znanstveni članek

Najdeno v: osebi
Ključne besede: CALET, cosmic rays, dark matter
Objavljeno: 06.01.2021; Ogledov: 960; Prenosov: 0
.pdf Polno besedilo (2,76 MB)

4.
Searching for cosmic-ray signals from decay of fermionic dark matter with CALET
Saptashwa Bhattacharyya, Holger Motz, Shoji Torii, Yoichi Asaoka, 2017, objavljeni znanstveni prispevek na konferenci

Najdeno v: osebi
Ključne besede: dark matter, cosmic-rays, CALET
Objavljeno: 08.02.2021; Ogledov: 942; Prenosov: 0
.pdf Polno besedilo (2,36 MB)

5.
Self consistent simulation of dark matter and background
Saptashwa Bhattacharyya, Holger Motz, Shoji Torii, Yoichi Asaoka, Yuko Okada, 2015, objavljeni znanstveni prispevek na konferenci

Najdeno v: osebi
Ključne besede: dark matter, GALPROP, cosmic-rays
Objavljeno: 04.02.2021; Ogledov: 908; Prenosov: 0
.pdf Polno besedilo (527,13 KB)

6.
Localisation and classification of gamma ray sources using neural networks
Guõlaugur Jóhannesson, Roberto Ruiz de Austri, Gabrijela Zaharijas, Sascha Caron, Boris Panes, Saptashwa Bhattacharyya, Chris van den Oetelaar, 2021, objavljeni znanstveni prispevek na konferenci

Opis: With limited statistics and spatial resolution of current detectors, accurately localising and separating gamma-ray point sources from the dominating interstellar emission in the GeV energy range is challenging. Motivated by the challenges of the traditional methods used for the gamma-ray source detection, here we demonstrate the application of deep learning based algorithms to automatically detect and classify point sources, which can be applied directly to the binned Fermi-LAT data and potentially be generalised to other wavelengths. For the point source detection task, we use popular deep neural network structure U-NET, together with image segmentation, for precise localisation of sources, various clustering algorithms were tested on the segmented images. The training samples are based on the source properties of AGNs and PSRs from the latest Fermi-LAT source catalog, in addition to the background interstellar emission. Finally, we have created a more complex but robust training data generation exploiting full detector potential, increasing spatial resolution at the highest energies.
Najdeno v: osebi
Ključne besede: gamma-rays, deep learning, computer vision
Objavljeno: 01.10.2021; Ogledov: 507; Prenosov: 15
URL Polno besedilo (0,00 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0 sek.
Na vrh