Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Performance of microAethalometers: Real-world Field Intercomparisons from Multiple Mobile Measurement Campaigns in Different Atmospheric Environments
Honey Alas, Thomas Mueller, Kay Weinhold, Sascha Pfeifer, Kristina Glojek, Asta Gregorič, Griša Močnik, Luka Drinovec, Francesca Costabile, Martina Ristorini, A. Wiedensohler, 2020, izvirni znanstveni članek

Opis: Small aethalometers are frequently used to measure equivalent black carbon (eBC) mass concentrations in the context of personal exposure and air pollution mapping through mobile measurements (MM). The most widely used is the microAethalometer (AE51). Its performance in the laboratory and field is well documented, however, there is not sufficient data in the context of its performance in different environments. In this investigation, we present the characterization of the performance of the AE51 through field unit-to-unit intercomparisons (IC), and against a reference absorption photometer from three MM campaigns conducted in drastically different environments. Five IC parameters were considered: i) study area, ii) location of IC, iii) time of day, iv) duration of IC, and v) correction for the filter-loading effect. We can conclude that it is crucial where and how long the IC have been performed in terms of the correlation between the mobile and reference instruments. Better correlations (R2 > 0.8, slope = 0.8) are achieved for IC performed in rural, and background areas for more than 10 minutes. In locations with more homogenous atmosphere, the correction of the loading effect improved the correlation between the mobile and reference instruments. In addition, a newer microAethalometer model (MA200) was characterized in the field under extreme cold conditions and correlated against another MA200 (R2 > 0.8, slope ≈ 1.0), AE51(R2 > 0.9, slope ≈ 0.9), and a stationary Aethalometer (AE33) across all wavelengths (R2 > 0.8, slope ≈ 0.7). For MA200, the loading effect was more pronounced, especially at the lower wavelengths, hence the correction of the loading effect is essential to improve the correlation against the AE33. The MA200 and AE51 proved to be robust and dependable portable instruments for MM applications. Real-world quality assurance of these instruments should be performed through field IC against reference instruments with longer durations in areas of slowly changing eBC concentration.
Najdeno v: osebi
Ključne besede: Portable instruments, Mobile monitoring, Black carbon, Instrument intercomparisons
Objavljeno: 15.09.2020; Ogledov: 632; Prenosov: 27
.pdf Polno besedilo (3,54 MB)

Intercomparison and characterization of 23 Aethalometers under laboratory and ambient air conditions:
Björn Briel, Vadimas Dudoitis, Javier Fernández-García, Paul Buckley, Sascha Pfeifer, Maria Cruz Minguillon, Thomas Müller, Luka Drinovec, Andrea Cuesta-Mosquera, Griša Močnik, 2021, izvirni znanstveni članek

Opis: Aerosolized black carbon is monitored worldwide to quantify its impact on air quality and climate. Given its importance, measurements of black carbon mass concentrations must be conducted with instruments operating in quality-checked and ensured conditions to generate data which are reliable and comparable temporally and geographically. In this study, we report the results from the largest characterization and intercomparison of filter-based absorption photometers, the Aethalometer model AE33, belonging to several European monitoring networks. Under controlled laboratory conditions, a total of 23 instruments measured mass concentrations of black carbon from three well-characterized aerosol sources: synthetic soot, nigrosin particles, and ambient air from the urban background of Leipzig, Germany. The objective was to investigate the individual performance of the instruments and their comparability; we analyzed the response of the instruments to the different aerosol sources and the impact caused by the use of obsolete filter materials and the application of maintenance activities. Differences in the instrument-to-instrument variabilities from equivalent black carbon (eBC) concentrations reported at 880 nm were determined before maintenance activities (for soot measurements, average deviation from total least square regression was −2.0 % and the range −16 % to 7 %; for nigrosin measurements, average deviation was 0.4 % and the range −15 % to 17 %), and after they were carried out (for soot measurements, average deviation was −1.0 % and the range −14 % to 8 %; for nigrosin measurements, the average deviation was 0.5 % and the range −12 % to 15 %). The deviations are in most of the cases explained by the type of filter material employed by the instruments, the total particle load on the filter, and the flow calibration. The results of this intercomparison activity show that relatively small unit-to-unit variability of AE33-based particle light absorbing measurements is possible with well-maintained instruments. It is crucial to follow the guidelines for maintenance activities and the use of the proper filter tape in the AE33 to ensure high quality and comparable black carbon (BC) measurements among international observational networks.
Najdeno v: osebi
Ključne besede: black carbon, aerosol, absorption, filter absorption photometer, aethaloemter
Objavljeno: 03.05.2021; Ogledov: 203; Prenosov: 0
.pdf Polno besedilo (5,57 MB)

Iskanje izvedeno v 0 sek.
Na vrh