Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


31 - 40 / 63
Na začetekNa prejšnjo stran1234567Na naslednjo stranNa konec
31.
Investigating multiple ELVES and halos above strong lightning with the fluorescence detectors of the Pierre Auger Observatory
Roberto Mussa, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: ELVES are being studied since 2013 with the twenty-four FD Telescopes of the Pierre Auger Observatory, in the province of Mendoza (Argentina), the world’s largest facility for the study of ultra-high energy cosmic rays. This study exploits a dedicated trigger and extended readout. Since December 2020, this trigger has been extended to the three High Elevation Auger Telescopes (HEAT), which observe the night sky at elevation angles between 30 and 60 degrees, allowing a study of ELVES from closer lightning. The high time resolution of the Auger telescopes allows us to upgrade reconstruction algorithms and to do detailed studies on multiple ELVES. The origin of multiple elves can be studied by analyzing the time difference and the amplitude ratio between flashes and comparing them with the properties of radio signals detected by the ENTLN lightning network since 2018. A fraction of multi-ELVES can also be interpreted as halos following ELVES. Halos are disc-shaped light transients emitted at 70-80 km altitudes, appearing at the center of the ELVES rings, due to the rearrangement of electric charges at the base of the ionosphere after a strong lightning event.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, surface detectors, fluorescence detectors
Objavljeno v RUNG: 23.01.2024; Ogledov: 1167; Prenosov: 6
.pdf Celotno besedilo (9,35 MB)
Gradivo ima več datotek! Več...

32.
Auger@TA : an Auger-like surface detector micro-array embedded within the Telescope Array Project
S. Mayotte, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory (Auger) and the Telescope Array Project (TA) are the two largest ultra-highenergy cosmic ray (UHECR) observatories in the world. One obstacle in pursuing full-sky UHECR physics is the apparent discrepancy in flux measured by the two experiments. This could be due to astrophysical differences as Auger and TA observe the Southern and Northern skies, respectively. However, the scintillation detectors used by TA have very different sensitivity to the various components of extensive air showers than the water-Cherenkov detectors (WCD) used by Auger. The discrepancy could also be due to systematic effects arising from the differing detector designs and reconstruction methods. The primary goal of the Auger@TA working group is to cross-calibrate the approaches of the two observatories using in-situ methods. This is achieved by placing a self-triggering micro-array, which consists of eight Auger surface detector stations, with both WCDs and AugerPrime scintillators, within the TA array. Seven of the WCDs use a 1-PMT prototype configuration and form a hexagon with the Auger spacing of 1.5 km. The eighth station uses a standard 3-PMT Auger WCD, placed with a TA station at the center of the hexagon to form a triplet for high-statistics, low-uncertainty, cross-calibration of instrumentation. Deployment of the micro-array took place between September 2022 and August 2023, with data-taking foreseen by the Fall of 2023. Details on the instrumentation and deployment of the micro-array, as well as its expected performance, trigger efficiencies, and event rate will be presented. First data from individual stations will also be shown.
Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, Telescope Array, AugerPrime, scintillators, water-Cherenkov detectors
Objavljeno v RUNG: 23.01.2024; Ogledov: 1208; Prenosov: 7
.pdf Celotno besedilo (2,50 MB)
Gradivo ima več datotek! Več...

33.
Measurement of the mass composition of ultra-high-energy cosmic rays at the Pierre Auger Observatory
Eric Mayotte, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: After nearly 20 years of data-taking, the measurements made with the Pierre Auger Observatory represent the largest collection of ultra-high-energy cosmic ray (UHECR) data so far assembled from a single instrument. Exploring this data set led to a deeper understanding of the UHECR flux and many surprises. In particular, studies aiming to investigate and leverage the mass composition of UHECRs have played an important role in empowering discovery. This contribution will present an overview of the analyses of primary mass composition carried out during the first phase of the Observatory. The overview includes analyses derived from measurements made by the surface, fluorescence, and radio detectors covering energies ranging from 0.1 EeV up to 100 EeV. Special attention will be given to recent advances and results to provide a complete picture of UHECR mass composition at the Observatory as it moves to its next phase, AugerPrime. Additionally, specific updates will be given to studies focusing on mass trends from surface detector rise-times, �max dependent anisotropies, and UHECR beam characterization using the correlation between �max and signal amplitudes at the ground.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, AERA, water-Cherenkov detector
Objavljeno v RUNG: 23.01.2024; Ogledov: 1223; Prenosov: 5
.pdf Celotno besedilo (1,03 MB)
Gradivo ima več datotek! Več...

34.
Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger Observatory
Marvin Gottowik, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: In this proceeding, we present a proof of principle study for estimating the number of muons of inclined air showers proportional to their energy using hybrid radio and particle detection. We use the radiation energy of an air shower to estimate its electromagnetic energy and measure the muon number independently with the water-Cherenkov detector array (WCD) of the Pierre Auger Observatory. We select 32 high-quality events in almost six years of data with electromagnetic energies above 4 EeV to ensure full efficiency for the WCD reconstruction. The muon content in data is found to be compatible with the one for an iron primary as predicted by current-generation hadronic interaction models. This can be interpreted as a deficit of muons in simulations as a lighter mass composition is expected from �max measurements. Such a muon deficit was already observed in previous analyses of the Auger collaboration and is now confirmed for the first time with radio data. Currently, this analysis is limited by low statistics due to the small area of AERA of 17 km^2 and the high energy threshold. We will outline the advantages of using radio detection instead of the Auger Fluorescence Detector in future analyses allowing for high-statistic measurements of the muon content as a function of energy.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, AERA, water-Cherenkov detector
Objavljeno v RUNG: 23.01.2024; Ogledov: 1570; Prenosov: 7
.pdf Celotno besedilo (1,49 MB)
Gradivo ima več datotek! Več...

35.
Status and expected performance of the AugerPrime radio detector
Jannis Pawlowsky, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The ongoing AugerPrime upgrade of the Pierre Auger Observatory will yield sensitivity and precision for measuring ultra-high energy (UHE) cosmic rays that are significantly improved over the baseline design. A key part is the installation of the Radio Detector (RD), consisting of loop antennas mounted on top of each of the 1660 water-Cherenkov detectors (WCD). These antennas, with polarizations both parallel and perpendicular to Earth’s magnetic field, are sensitive to inclined air showers and will also improve the sky coverage and exposure of the observatory. Of special interest is the great sensitivity to the electromagnetic component of air showers, yielding new information for the reconstruction of the primary mass, energy and arrival direction. Complementing traditional particle detectors like the WCD, the combination of both yields new opportunities to detect rare primary particles, e.g. UHE photons and neutrinos with a large identification probability. Here we present the status and future prospects of the RD.With mass production and deployment ongoing, we showair shower statistics and reconstructions of the already installed detector stations. We detail the layout and integration of the RD, demonstrating the potential of the observatory including radio measurements and RD triggering, especially to detect air showers with weak particle footprints. We show that the new trigger enables the measurement of events for which traditional particle detectors are less sensitive.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, radio detector, air shower
Objavljeno v RUNG: 23.01.2024; Ogledov: 1247; Prenosov: 6
.pdf Celotno besedilo (7,29 MB)
Gradivo ima več datotek! Več...

36.
The dynamic range of the upgraded surfac-detector stations of AugerPrime
Gioacchino Alex Anastasi, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The detection of ultra-high-energy cosmic rays by means of giant detector arrays is often limited by the saturation of the recorded signals near the impact point of the shower core at the ground, where the particle density dramatically increases. The saturation affects in particular the highest energy events, worsening the systematic uncertainties in the reconstruction of the shower characteristics. The upgrade of the Pierre Auger Observatory, called AugerPrime, includes the installation of an 1-inch Small PhotoMultiplier Tube (SPMT) inside each water-Cherenkov station (WCD) of the surface detector array. The SPMT allows an unambiguous measurement of signals down to about 250m from the shower core, thus reducing the number of events featuring a saturated station to a negligible level. In addition, a 3.8m2 plastic scintillator (Scintillator Surface Detector, SSD) is installed on top of each WCD. The SSD is designed to match the WCD (with SPMT) dynamic range, providing a complementary measurement of the shower components up to the highest energies. In this work, the design and performances of the upgraded AugerPrime surface detector stations in the extended dynamic range are described, highlighting the accuracy of the measurements. A first analysis employing the unsaturated signals in the event reconstruction is also presented.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, fluorescence detectors, scintillator surface detectors
Objavljeno v RUNG: 23.01.2024; Ogledov: 1378; Prenosov: 7
.pdf Celotno besedilo (616,96 KB)
Gradivo ima več datotek! Več...

37.
The number of muons measured in hybrid events detected by the Pierre Auger Observatory
Maximilian Stadelmaier, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The number of muons produced in extensive air showers is a reliable proxy for the amount of hadron production that occurs during the shower development. It is, therefore, an important observable in the context of identifying the mass composition of ultrahigh-energy cosmic rays. Beyond LHC energies, however, hadronic multiparticle production as it occurs in air showers from ultrahigh-energy cosmic rays, is poorly understood, and currently there is little to no way to directly test it experimentally. In simulations, current models of hadronic interactions are unable to produce the average number of muons that is measured by multiple air-shower experiments. In this work, we estimate the number of muons in vertical hybrid events detected by both the fluorescence and surface detectors of the Pierre Auger Observatory above a primary energy of 3 EeV. To reconstruct the signal, we use a model of the water-Cherenkov detector responses that is based on air-shower universality. We take into account the effect of the longitudinal shower development on the lateral distribution of the signal at the ground, as well as the primary energy estimated from the calorimetric energy deposition of the air shower. In this way, we are able to estimate the amount of muons created in vertical showers, relative to expectations from simulated showers using modern hadronic interaction models.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, muons, extensive air showers
Objavljeno v RUNG: 23.01.2024; Ogledov: 1751; Prenosov: 6
.pdf Celotno besedilo (2,04 MB)
Gradivo ima več datotek! Več...

38.
Depth of maximum of air-shower profiles above ▫$10^{17.8}$▫ eV measured with the fluorescence detector of the Pierre Auger Observatory and mass-composition implications
Thomas Fitoussi, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: After seventeen years of operation, the first phase of measurements at the PierreAuger Observatory finished and the process of upgrading it began. In this work, we present distributions of the depth of air-shower maximum, �max, using profiles measured with the fluorescence detector of the Pierre Auger Observatory. The analysis is based on the Phase I data collected from 01 December 2004 to 31 December 2021. The �max measurements take advantage of an improved evaluation of the vertical aerosol optical depth and reconstruction of the shower profiles. We present the energy dependence of the mean and standard deviation of the �max distributions above 10^(17.8) eV. Both �max moments are corrected for detector effects and interpreted in terms of the mean logarithmic mass and variance of the masses by comparing them to the predictions of post-LHC hadronic interaction models. We corroborate our earlier findings regarding the change of the elongation rate of the mean �max at 10^(18.3) eV with higher significance. We also confirm, with four more years of data compared to the last results presented in 2019, that around the ankle in the cosmic rays spectrum, the proton component gradually disappears and that intermediate mass nuclei dominate the composition at ultra-high energies.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, protons, surface detector
Objavljeno v RUNG: 23.01.2024; Ogledov: 1261; Prenosov: 8
.pdf Celotno besedilo (1,16 MB)
Gradivo ima več datotek! Več...

39.
Reconstruction of muon number of air showers with the surface detector of the Pierre Auger Observatory using neural networks
Steffen Traugott Hahn, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: To understand the physics of cosmic rays at the highest energies, it is mandatory to have an accurate knowledge of their mass composition. Since the mass of the primary particles cannot be measured directly, we have to rely on the analysis of mass-sensitive observables to gain insights into this composition. A promising observable for this purpose is the number of muons at the ground relative to that of an air shower induced by a proton primary of the same energy and inclination angle, commonly referred to as the relative muon number �μ. Due to the complexity of shower footprints, the extraction of �μ from measurements is a challenging task and intractable to solve using analytic approaches. We, therefore, reconstruct �μ by exploiting the spatial and temporal information of the signals induced by shower particles using neural networks. Using this data-driven approach permits us to tackle this task without the need of modeling the underlying physics and, simultaneously, gives us insights into the feasibility of such an approach. In this contribution, we summarize the progress of the deep-learning-based approach to estimate �μ using simulated surface detector data of the Pierre Auger Observatory. Instead of using single architecture, we present different network designs verifying that they reach similar results. Moreover, we demonstrate the potential for estimating �μ using the scintillator surface detector of the AugerPrime upgrade.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, AugerPrime, surface detector
Objavljeno v RUNG: 23.01.2024; Ogledov: 1599; Prenosov: 7
.pdf Celotno besedilo (939,38 KB)
Gradivo ima več datotek! Več...

40.
A novel tool for the absolute end-to-end calibration of fluorescence telescopes : the XY-scanner
Christoph Schäfer, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory uses 27 large-aperture wide-angle Schmidt telescopes to measure the longitudinal profile of air showers using the air-fluorescence technique. Up to the year 2013, the absolute calibration of the telescopes was performed by mounting a uniform large-diameter light source on each of the telescopes and illuminating the entire aperture with a known photon flux. Due to the high amount of work and person-power required, this procedure was only carried out roughly once every three years, and a relative calibration was performed every night to track short-term changes. Since 2013, only the relative calibration has been performed. In this paper, we present a novel tool for the absolute end-to-end calibration of the fluorescence detectors, the XY-Scanner. The XY-Scanner uses a portable integrating sphere as a light source, which has been absolutely calibrated. This light source is installed onto a motorized rail system and moved across the aperture of each telescope. We mimic the illumination of the entire aperture by flashing the light source at ∼1700 positions evenly distributed across the telescope aperture. For the absolute calibration of the light source, we built a dedicated setup that uses a NIST-calibrated photodiode to measure the average photon flux and a PMT to track the pulse-to-pulse stability. We present the laboratory setups used to study the characteristics of the employed light sources and discuss the inter-calibration between selected telescopes.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, fluorescence detectors, longitudinal profile
Objavljeno v RUNG: 23.01.2024; Ogledov: 1523; Prenosov: 7
.pdf Celotno besedilo (5,33 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.04 sek.
Na vrh