51. Depth of maximum of air-shower profiles : testing the compatibility of the measurements at the Pierre Auger Observatory and the Telescope ArrayA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The Pierre Auger Observatory (Auger) and the Telescope Array (TA), located, respectively, in the Southern and Northern hemispheres, are the largest ultra-high-energy cosmic ray (UHECR) observatories. The Auger and TA Collaborations have collected unprecedented statistics providing us with a unique opportunity to search for the differences between the UHECR energy spectra and mass compositions in the complementary sky regions. To correctly attribute such differences to
the properties of the UHECR sources or propagation, the systematic effects in the measurements of each observatory should be considered properly. In this context, the task of the Auger – TA mass composition working group is to identify possible differences of astrophysical origin in the measurements of the depth of the maximum of air-shower profiles, X_max, performed at both observatories using the fluorescence technique. Due to distinct approaches to event selection and analysis atAuger and TA, theworking group uses a specially designed method to transfer the Auger X_max distributions into the TA detector. To this end, dedicated air-shower and detector simulations for the TA Black Rock Mesa and Long Ridge fluorescence detector stations were performed with the Sibyll 2.3d hadronic interaction model. From the comparison of the first two moments and the shapes of X_max distributions for energies above 10^18.2 eV, no significant differences between the Auger and TA measurements were found. Ključne besede: Pierre Auger Observatory, Telescope Array, ultra-high energy cosmic rays, fluorescence detectors Objavljeno v RUNG: 22.01.2024; Ogledov: 1533; Prenosov: 6 Celotno besedilo (1,19 MB) Gradivo ima več datotek! Več... |
52. Constraining models for the origin of ultra-high-energy cosmic rays with a novel combined analysis of arrival directions, spectrum, and composition data measured at the Pierre Auger ObservatoryA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, izvirni znanstveni članek Opis: The combined fit of the measured energy spectrum and shower maximum depth
distributions of ultra-high-energy cosmic rays is known to constrain the parameters of
astrophysical models with homogeneous source distributions. Studies of the distribution of
the cosmic-ray arrival directions show a better agreement with models in which a fraction of
the flux is non-isotropic and associated with the nearby radio galaxy Centaurus A or with
catalogs such as that of starburst galaxies. Here, we present a novel combination of both
analyses by a simultaneous fit of arrival directions, energy spectrum, and composition data
measured at the Pierre Auger Observatory. The model takes into account a rigidity-dependent magnetic field blurring and an energy-dependent evolution of the catalog contribution shaped by interactions during propagation.
We find that a model containing a flux contribution from the starburst galaxy catalog
of around 20% at 40 EeV with a magnetic field blurring of around 20◦ for a rigidity of
10EV provides a fair simultaneous description of all three observables. The starburst galaxy
model is favored with a significance of 4.5σ (considering experimental systematic effects)
compared to a reference model with only homogeneously distributed background sources.
By investigating a scenario with Centaurus A as a single source in combination with the
homogeneous background, we confirm that this region of the sky provides the dominant
contribution to the observed anisotropy signal. Models containing a catalog of jetted active
galactic nuclei whose flux scales with the γ-ray emission are, however, disfavored as they
cannot adequately describe the measured arrival directions. Ključne besede: ultra high energy cosmic rays, cosmic ray experiments, Pierre Auger Observatory, active galactic nuclei Objavljeno v RUNG: 19.01.2024; Ogledov: 1408; Prenosov: 40 Celotno besedilo (3,93 MB) Gradivo ima več datotek! Več... |
53. Update on the offline framework for AugerPrime and production of reference simulation libraries using the VO Auger grid resourcesEva Santos, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: Taking data stably since 2004, the Pierre Auger Observatory has published numerous results regarding the properties of ultra-high-energy cosmic rays with unprecedented statistics. However, questions about their origin and mass composition remain unanswered, motivating us to build AugerPrime, a major upgrade of our surface detector array with improved electronics and new detectors. The upgrade is swiftly approaching its completion. Phase II of the Pierre Auger Observatory has begun, which called for an update of the Offline software Framework and modules to handle the additional detectors and the new electronics. Thanks to its modular structure, Offline has proved flexible enough to accommodate all the changes required to handle AugerPrime data reconstruction and event simulation. Additionally, new reference libraries of shower and detector simulations, including dedicated libraries envisaging the searches for neutral particles, such as ultra-high-energy photons and neutrinos, profiting from the new AugerPrime detectors with the upgraded electronics, are in the pipeline. In this contribution, we report on the current status and
prospects for the Auger Off line Framework and the production of reference Monte Carlo libraries for AugerPrime. Ključne besede: AugerPrime, Pierre Auger Observatory, cosmic rays, surface detectors Objavljeno v RUNG: 16.01.2024; Ogledov: 1384; Prenosov: 8 Celotno besedilo (1,52 MB) Gradivo ima več datotek! Več... |
54. Search for evidence of neutron fluxes using Pierre Auger Observatory dataDanelise De Oliveira Franco, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: Astrophysical neutral particles, such as neutrons, can point directly to their sources since they are not affected by magnetic fields. We expect neutron production in the immediate vicinity of the acceleration sites due to cosmic ray interactions. Hence, a high-energy neutron flux could help to identify sources of cosmic rays in the EeV range. Free neutrons, although unstable, can travel a mean distance of 9.2 kpc times their energy in EeV. Due to the neutron instability, we limit the searches to Galactic candidate sources. Since air showers initiated by a neutron are indistinguishable from those generated by a proton, we would recognize a neutron flux as an
excess of events from the direction of its source. Previous searches using events with a zenith angle up to 60^◦ and energies above 1 EeV found no surplus of events that would indicate a neutron flux. We present the results of the search for evidence of high-energy neutron fluxes using a data set about three times larger than the previous work. We investigate the sky in the field of view of the Pierre Auger Observatory, narrowing down to specific directions of candidate sources. With respect to previous works, we extend the angular range up to zenith angles of 80^◦ , reaching declinations from −90^◦ to +45^◦ , and the energy range going as low as 0.1 EeV. The extension in the field of view provides exposure to the Crab Nebula for the first time. Ključne besede: neutrons, cosmic ray, Pierre Auger Observatory, Crab Nebula, proton, high-energy neutron flux Objavljeno v RUNG: 14.11.2023; Ogledov: 1753; Prenosov: 6 Celotno besedilo (472,98 KB) Gradivo ima več datotek! Več... |
55. AugerPrime surface detector electronicsA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, izvirni znanstveni članek Opis: Operating since 2004, the Pierre Auger Observatory has led to major advances in our
understanding of the ultra-high-energy cosmic rays. The latest findings have revealed new insights that led to the upgrade of the Observatory, with the primary goal of obtaining information on the primary mass of the most energetic cosmic rays on a shower-by-shower basis. In the framework of the upgrade, called AugerPrime, the 1660 water-Cherenkov detectors of the surface array are equipped with plastic scintillators and radio antennas, allowing us to enhance the composition sensitivity. To accommodate new detectors and to increase experimental capabilities, the electronics
is also upgraded. This includes better timing with up-to-date GPS receivers, higher sampling
frequency, increased dynamic range, and more powerful local processing of the data. In this paper, the design characteristics of the new electronics and the enhanced dynamic range will be described. The manufacturing and test processes will be outlined and the test results will be discussed. The calibration of the SD detector and various performance parameters obtained from the analysis of the first commissioning data will also be presented. Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, AugerPrime detector upgrade, surface detector array, surface detector electronics Objavljeno v RUNG: 18.10.2023; Ogledov: 2116; Prenosov: 6 Celotno besedilo (2,07 MB) Gradivo ima več datotek! Več... |
56. Search for primary photons at tens of PeV with the Pierre Auger ObservatoryNicolás González, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The observation of primary photons with energies around 10[sup]16 eV would be particularly interesting after the discovery of Galactic gamma-ray sources with spectra extending into the PeV range. Since photons are connected to the acceleration of charged particles, searches for photons enhance the multi-messenger understanding of cosmic-ray sources as well as of transient astrophysical phenomena, while offering wealthy connections to neutrino astronomy and dark matter. Additionally, diffuse photon fluxes are expected from cosmic-ray interactions with Galactic matter and background radiation fields. Previously, the energy domain between 1 PeV and 200 PeV was only explored from the Northern Hemisphere. The Pierre Auger Observatory is the largest astroparticle experiment in operation and, thanks to its location, has a sizable exposure to the Southern sky,
including the Galactic center region. In this contribution, we present the first search for photons from the Southern hemisphere between 50 and 200 PeV exploiting the Auger data acquired during
∼4 yr of operation. We describe the method to discriminate photons against the dominating hadronic background; it is based on the measurements of air showers taken with the low-energy extension of the Pierre Auger Observatory composed by 19 water-Cherenkov detectors spanning ∼ 2km[sup]2 and an Underground Muon Detector. The search for a diffuse flux of photons is presented and its results are interpreted according to theoretical model predictions. This study extends the range of Auger photon searches to almost four decades in energy. Ključne besede: Pierre Auger Observatory, cosmic rays, photons, water-Cherenkov detectors, underground muon detectors Objavljeno v RUNG: 26.09.2023; Ogledov: 1615; Prenosov: 7 Celotno besedilo (707,98 KB) Gradivo ima več datotek! Več... |
57. Constraints on BSM particles from the absence of upward-going air showers in the Pierre Auger ObservatoryBaobiao Yue, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The Fluorescence Detector (FD) of the Pierre Auger Observatory has a large exposure to search for upward-going showers. Constraints have been recently obtained by using 14 years of FD data searching for upward-going showers in the zenith angle range [110◦, 180◦]. In this work, we translate these bounds to upper limits of a possible flux of ultra high energy tau-leptons escaping from the Earth into the atmosphere. Such a mechanism could explain the observation of "anomalous pulses" made by ANITA, that indicated the existence of upward-going air showers with energies above 10[sup]17 eV. As tau neutrinos would be absorbed within the Earth at the deduced
angles and energies, a flux of upward-going taus could only be resulted from an unknown type of ultra high energy Beyond Standard Model particle penetrating the Earth with little attenuation, and then creating tau-leptons through interactions within a maximum depth of about 50 km before exiting. We test classes of such models in a generic way and determine upper flux limits of ultra high energy BSM particles as a function of their unknown cross section with matter. Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, fluorescence detector, upward-going air showers, Beyond Standard Model particles Objavljeno v RUNG: 26.09.2023; Ogledov: 1675; Prenosov: 8 Celotno besedilo (544,10 KB) Gradivo ima več datotek! Več... |
58. The fitting procedure for longitudinal shower profiles observed with the fluorescence detector of the Pierre Auger ObservatoryJ. A. Bellido, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The Pierre Auger Observatory uses fluorescence telescopes in conjunction with ground level
particle detectors to measure high-energy cosmic rays and reconstruct, with greater precision,
their arrival direction, their energy and the depth of shower maximum. The depth of shower
maximum is important to infer cosmic ray mass composition. The fluorescence detector is
capable of directly measuring the longitudinal shower development, which is used to reconstruct
the cosmic ray energy and the atmospheric depth of shower maximum. However, given the limited
field of view of the fluorescence detector, the shower profile is not always fully contained within
the detector observation volume. Therefore, considerations need to be taken in order to reconstruct
some events. In this contribution we will describe the method that the Pierre Auger Collaboration
uses to reconstruct the longitudinal profiles of showers and present the details of its performance,
namely its resolution and systematic uncertainties. Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, longitudinal shower profiles Objavljeno v RUNG: 20.09.2023; Ogledov: 1731; Prenosov: 7 Celotno besedilo (827,67 KB) Gradivo ima več datotek! Več... |
59. Constraining the sources of ultra-high-energy cosmic rays across and above the ankle with the spectrum and composition data measured at the Pierre Auger ObservatoryA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, izvirni znanstveni članek Opis: In this work we present the interpretation of the energy spectrum and mass composition data as measured by the Pierre Auger Collaboration above 6 × 10[sup]17 eV. We use an astrophysical model with two extragalactic source populations to model the hardening of the cosmic-ray flux at around 5 × 10[sup]18 eV (the so-called "ankle" feature) as a transition between these two components. We find our data to be well reproduced if sources above the ankle emit a mixed composition with a hard spectrum and a low rigidity cutoff. The component below the ankle is required to have a very soft spectrum and a mix of protons and intermediate-mass nuclei. The origin of this intermediate-mass component is not well constrained and it could originate from either Galactic or extragalactic sources. To the aim of evaluating our capability to constrain astrophysical models, we discuss the impact on the fit results of the main experimental systematic uncertainties and of the assumptions about quantities affecting the air shower development as well as the propagation and redshift distribution of injected ultra-high-energy cosmic rays (UHECRs). Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, UHECR propagation, UHECR energy spectrum, UHECR mass composition Objavljeno v RUNG: 18.08.2023; Ogledov: 1597; Prenosov: 11 Celotno besedilo (2,39 MB) Gradivo ima več datotek! Več... |
60. Search for photons above ▫$10^19$▫ eV with the surface detector of the Pierre Auger ObservatoryP. Abreu, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2023, izvirni znanstveni članek Opis: We use the surface detector of the Pierre Auger Observatory to search for air showers initiated by photons with an energy above 10[sup]19 eV. Photons in the zenith angle range from 30 deg. to 60 deg. can be identified in the overwhelming background of showers initiated by charged cosmic rays through the broader time structure of the signals induced in the water-Cherenkov detectors of the array and the steeper lateral distribution of shower particles reaching ground. Applying the search method to data collected between January 2004 and June 2020, upper limits at 95% CL are set to an E[sup]-2 diffuse flux of ultra-high energy photons above 10[sup]19 eV, 2 × 10[sup]19 eV and 4 × 10[sup]19 eV amounting to 2.11 × 10[sup]-3, 3.12 × 10[sup]-4 and 1.72 × 10[sup]-4 km-2 sr-1 yr-1, respectively. While the sensitivity of the present search around 2 × 10[sup]19 eV approaches expectations of cosmogenic photon fluxes in the case of a pure-proton composition, it is one order of magnitude above those from more realistic mixed-composition models. The inferred limits have also implications for the search of super-heavy dark matter that are discussed and illustrated. Ključne besede: ultra-high-energy cosmic rays, UHE photons, Pierre Auger Observatory, extensive air showers, water Cherenkov detectors Objavljeno v RUNG: 18.08.2023; Ogledov: 1612; Prenosov: 14 Celotno besedilo (2,46 MB) Gradivo ima več datotek! Več... |