251. The AMIGA Muon Counters of the Pierre Auger Observatory: Performance and Studies of the Lateral Distribution FunctionBrian Wundheiler, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci Opis: The AMIGA enhancement (Auger Muons and Infill for the Ground
Array) of the Pierre Auger Observatory consists of a 23.5 km2
infill area where air shower particles are sampled by water-
Cherenkov detectors at the surface and by 30 m2 scintillation
counters buried 2.3 m underground. The Engineering Array of
AMIGA, completed since February 2015, includes 37 scintillator
modules (290 m2) in a hexagonal layout. In this work, the muon
counting performance of the scintillation detectors is analysed
over the first 20 months of operation. Parametrisations of the
detector counting resolution and the lateral trigger
probability are presented. Finally, preliminary results on the observed muon lateral distribution function (LDF) are discussed. Ključne besede: Pierre Auger Observatory, AMIGA (Auger Muons and Infill for the Ground Array) muon
counters, muon lateral distribution function (LDF) Objavljeno v RUNG: 03.03.2016; Ogledov: 5680; Prenosov: 182
Celotno besedilo (499,33 KB) |
252. Upgrade of the Pierre Auger Observatory (AugerPrime)Ralph Engel, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci Opis: The data collected with the Pierre Auger Observatory have led
to a number of surprising discoveries. While a strong
suppression of the particle flux at the highest energies has
been established unambiguously, the dominant physics processes
related to this suppression could not be identified.
Within the energy range covered by fluorescence detector
observations with sufficient statistics, an unexpected change
of the depth of maximum distribution is found. Using LHC-tuned
interaction models these observations can be understood as a
correlated change of the fluxes of different mass groups.
On the other hand, they could also indicate a change of
hadronic interactions above the energy of the ankle.
Complementing the water Cherenkov detectors of the surface
array with scintillator detectors will, mainly through the
determination of the muonic shower component, extend the
composition sensitivity of the Auger Observatory into the flux
suppression region. The upgrade of the Auger Observatory will
allow us to estimate the primary mass of the highest energy
cosmic rays on a shower-by-shower basis. In addition to
measuring the mass composition the upgrade will open the
possibility to search for light primaries at the highest
energies, to perform composition-selected anisotropy studies,
and to search for new phenomena including unexpected changes
of hadronic interactions. After introducing the physics
motivation for upgrading the Auger Observatory the planned
detector upgrade is presented. In the second part
of the contribution the expected performance and improved
physics sensitivity of the upgraded Auger Observatory are
discussed. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, elemental composition sensitivity, Auger upgrade (AugerPrime), muonic shower component, scintillator detectors Objavljeno v RUNG: 03.03.2016; Ogledov: 5516; Prenosov: 226
Celotno besedilo (659,02 KB) |
253. Studies in the atmospheric monitoring at the Pierre Auger Observatory using the upgraded Central Laser FacilityCarlos Medina-Hernandez, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci Opis: The Fluorescence Detector (FD) at the Pierre Auger Observatory
measures the intensity of the scattered light from laser tracks
generated by the Central Laser Facility (CLF) and the eXtreme
Laser Facility (XLF) to monitor and estimate the vertical
aerosol optical depth (τ(z,t)). This measurement is needed to
obtain unbiased and reliable FD measurements of the arrival
direction and energy of the primary cosmic ray, and the depth
of the maximum shower development. The CLF was upgraded
substantially in 2013 with the addition of a solid state laser,
new generation GPS, a robotic beam calibration system, better
thermal and dust isolation, and improved software. The upgrade
also included a back-scatter Raman LIDAR to measure τ(z,t).
The new features and applications of the upgraded instrument
are described. These include the laser energy calibration
and the atmospheric monitoring measurements. The first τ(z,t)
results and comparisons after the upgrade are presented using different methods. The first method compares the FD hourly
response to the scattered light from the CLF (or XLF) against
a reference hourly profile measured during a clear night where
zero aerosol contents are assumed. The second method simulates
FD responses with different atmospheric parameters and selects the parameters that provide the best fit to the actual FD
response. A third method uses the new Raman LIDAR receiver
in-situ to measure the back-scatter light from the CLF laser.
The results show a good data agreement for the first and second
methods using FD stations located at the same distance from the
facilities. Preliminary results of τ(z,t) using the Raman LIDAR
are presented as well. Ključne besede: Pierre Auger Observatory, extensive air showers, the Fluorescence Detector, atmospheric monitoring, vertical aerosol optical depth, the Central Laser Facility, the eXtreme Laser Facility Objavljeno v RUNG: 03.03.2016; Ogledov: 6324; Prenosov: 184
Celotno besedilo (3,96 MB) |
254. Lightning Detection at the Pierre Auger ObservatoryJulian Rautenberg, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci Opis: The Auger Engineering Radio Array, an extension of the Pierre
Auger Observatory with antennas in the MHz range, requires to
monitor the atmospheric conditions, which have a large influence
on the radio emission of air showers. In particular, amplified
signals up to an order of magnitude have been detected as an
affect of thunderstorms. For a more detailed investigation and
more generally, for detecting thunderstorms, a new lightning
detection system has been installed at the Pierre Auger
Observatory in Argentina. In addition, an electric-field mill
measures the field strength on ground level at the antenna
array. With these measurements, data periods affected
by thunderstorms can be identified. Additionally, a lightning
trigger for the water-Cherenkov detectors was developed to read
out individual stations when a lightning was detected nearby.
With these data, a possible correlation between the formation
of lightning and cosmic rays can be investigated even at low
energies of about 10[sup]15 eV. The structure and functionality
of the lightning detection are described and first data
analyses are shown. Ključne besede: Pierre Auger Observatory, Auger Engineering Radio Array, atmospheric monitoring, lightning detectors Objavljeno v RUNG: 03.03.2016; Ogledov: 5757; Prenosov: 200
Celotno besedilo (1,10 MB) |
255. Solar Cycle Modulation of Cosmic Rays Observed with the Low Energy Modes of the Pierre Auger ObservatoryJimmy Masías-Meza, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci Opis: The low energy modes of the surface detector array of the
Pierre Auger Observatory record variations in the flux of low
energy secondary particles with extreme detail. These two modes
consist of recording (1) the rate of signals for energies
between ∼15 MeV and ∼100 MeV (the Scaler mode) and (2) the
calibration charge histograms of the individual pulses detected
by each water-Cherenkov station, covering different energy
channels up to ∼1 GeV (the Histogram mode). Previous work has
studied the flux of galactic cosmic rays on short and
intermediate time scales (i.e. from minutes to weeks) using
these low energy modes. In this work, after including a long-
term correction to the response of the detectors, we present
the first long-term analysis of the flux of cosmic rays using
scalers and two energy bands of the calibration histograms.
We show its sensitivity to the solar cycle variation and its
relation to the solar modulation of cosmic rays for an 8-year
period. Ključne besede: Pierre Auger Observatory, Surface Detector, secondary cosmic rays, scaler mode, charge histogram mode, solar cycle modulation Objavljeno v RUNG: 03.03.2016; Ogledov: 6045; Prenosov: 209
Celotno besedilo (533,18 KB) |
256. Combined fit of spectrum and composition data as measured by the Pierre Auger ObservatoryAndrea Di Matteo, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci Opis: We present a combined fit of both flux and composition of
ultra-high energy cosmic rays as measured by the Pierre Auger
Observatory. The fit has been performed for energies above
5 × 10[sup]18 eV, i.e. the region of the all-particle spectrum
above the so-called “ankle” feature. A simple astrophysical model consisting of identical sources has been adopted, where
nuclei are injected with a rigidity dependent mechanism and the
sources are uniformly distributed in a comoving volume.
The fit results suggest a source model characterized by
relatively low maximum injection energies and hard spectral
indices. The impact of different sources of systematic
uncertainties in the above result is discussed. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, energy spectrum, elemental composition, combined data fit Objavljeno v RUNG: 03.03.2016; Ogledov: 5787; Prenosov: 234
Celotno besedilo (704,98 KB) |
257. Measurement of the average electromagnetic longitudinal shower profile at the Pierre Auger ObservatoryFrancisco Diogo, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci Opis: In addition to the standard Xmax and energy, the longitudinal
profiles of extensive air showers contain some more interesting
information. For energies above 10[sup]17.8 eV, we present the
average profiles as a function of atmospheric depth measured
for the first time at the Pierre Auger Observatory. The profile
shapes for different energy ranges are all well reproduced by a
Gaisser-Hillas function within the range studied. A detailed
analysis of the systematic uncertainties is performed using
data and a full detector simulation, and the results are
compared with predictions of hadronic interaction models for different primaries. Ključne besede: Pierre Auger Observatory, extensive air showers, longitudinal shower profile, Gaisser-Hillas finction Objavljeno v RUNG: 03.03.2016; Ogledov: 5276; Prenosov: 191
Celotno besedilo (684,20 KB) |
258. Extension of the measurement of the proton-air cross section with the Pierre Auger ObservatoryRalf Ulrich, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci Opis: With hybrid data of the Pierre Auger Observatory it is possible
to measure the cross section of proton-air collisions at
energies far beyond the reach of the LHC. Since the first
measurement by the Pierre Auger Collaboration the event
statistics has increased significantly. The proton-air
cross section is now estimated in the two energy intervals in
lg(E/eV) from 17.8 to 18 and from 18 to 18.5. These energies
are chosen so that they maximise the available event statistics
and at the same time lie in the region most compatible with a
significant primary proton fraction. Of these data, only the
20% of most proton-like events are considered for the
measurement. Furthermore, with a new generation of hadronic
interaction models which have been tuned to LHC data, the
model-dependent uncertainties of the measurement are re-visited. Ključne besede: Pierre Auger Observatory, extensive air showers, proton-air cross section, hadronic interaction models Objavljeno v RUNG: 03.03.2016; Ogledov: 5669; Prenosov: 199
Celotno besedilo (114,02 KB) |
259. Measurement of the muon content in air showers at the Pierre Auger ObservatoryLaura Collica, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci Opis: The muon content of extensive air showers is an
observable sensitive to the primary composition and to
the hadronic interaction properties. We present here
different methods which allow us to estimate the muon number
at the ground level and the muon production depth by
exploiting the measurement of the longitudinal, lateral and
temporal distribution of particles in air showers recorded at
the Pierre Auger Observatory. The results, obtained at about
10[sup]19 eV (E[inf]CM ∼ 140 TeV center-of-mass energy for
proton primaries), are compared to the predictions
of LHC-tuned hadronic interaction models with different primary
masses and suggest a deficit in the muon content at the
ground predicted by simulations. The Pierre Auger Observatory
uses water-Cherenkov detectors to measure particle
densities at the ground and therefore has a good
sensitivity to the muon content of air showers. Moreover, due
to its hybrid design, the combination of muon measurements with
other independent mass composition analyses such as Xmax
provides additional constraints on hadronic interaction models. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, muons, mass composition, hadronic interactions Objavljeno v RUNG: 03.03.2016; Ogledov: 5941; Prenosov: 221
Celotno besedilo (298,46 KB) |
260. Azimuthal asymmetry in the risetime of the Surface Detector signals of the Pierre Auger ObservatoryIgnacio Minaya, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci Opis: The azimuthal asymmetry in the risetime of signals in Auger
surface detector stations is a source of information on shower
development. The azimuthal asymmetry is due to a combination of
the longitudinal evolution of the shower and geometrical
effects related to the angles of incidence of the particles
into the detectors. The magnitude of the effect depends upon
the zenith angle and state of development of the shower and
thus provides a novel observable sensitive to the mass
composition of cosmic rays above 3 × 10[sup]18 eV. By comparing
measurements with predictions from shower simulations, we find
for both of our adopted models of hadronic physics (QGSJetII-
04 and Epos-LHC) an indication that the mean cosmic-ray mass
increases with energy, as has been inferred from other studies.
However the absolute values derived for the mass are dependent
on the shower model and on the range of distance from the
shower core selected. Thus the method has uncovered further
deficiencies in our understanding of shower modelling that must
be resolved before the mass composition can be inferred from
(sec θ)max. Ključne besede: Pierre Auger Observatory, Surface Detector, risetime of detector signal, azimuthal asymmetry, extensive air showers Objavljeno v RUNG: 03.03.2016; Ogledov: 5847; Prenosov: 199
Celotno besedilo (243,04 KB) |