1. |
2. |
3. Synthesis of bio-composite sustainable materials and their applications in environmental technologyMladen Franko, objavljeni povzetek znanstvenega prispevka na konferenci (vabljeno predavanje) Opis: Organic wastes such as wood, hair, feathers, exoskeletons of crustaceans and molluscs or even water melon rind represent some examples of valuable and abundant sources of natural polymers such as cellulose, keratin and chitin, which were already extensively exploited for preparation of novel bio-composite materials. Application of green chemistry approaches for their synthesis makes such bio-composites really sustainable materials with several interesting properties for different applications, including those in environmental technology. In this review, synthesis of novel bio-composites based on cellulose (CEL), chitosan (CS - chemically modified chitin) or keratin (KER) and their potential for application in environmental technology will be presented.
The synthesis is based on dissolution of bio-polymers in ionic liquids. This is the crucial step in the synthesis of such materials, which at the same time makes the process completely recyclable with regard to the solvents. The tensile strength is regulated by the proportion of CEL in the material, while higher proportions of CS were shown to add to the adsorptive and antimicrobial activity of the material [1]. Antimicrobial activity was also observed for CEL:KER materials and was further improved by decorating the bio-composites with silver or gold nanoparticles [2].
Our research has shown high potential for application of synthesised bio-composites in environmental technologies including removal of toxins or killing of pathogens in water. It was demonstrated that CEL:CS composites can remove up to 96 mg of microcystin per gram of composite, which is almost 5 times higher than best known adsorbent for microcystin [1]. On the other hand CEL:KER composites with incorporated Ag0 nanoparticles have shown up to 6 logs of reduction in the number of bacteria (99.9999% growth reduction) of bacteria such as E. coli which is a frequently encountered pathogen in wastewaters [2].
[1] TRAN, C. D., DURI, S., DELNERI, A., FRANKO, M. (2013), Chitosan-cellulose composite materials: preparation, characterization and application for removal of microcystin, Journal of hazardous materials. 252/253, p 355-366
[2] TRAN, C. D., PROSENC, F., FRANKO, M., BENZI, G. (2016, One-pot synthesis of biocompatible silver nanoparticle composites from cellulose and keratin: characterization and antimicrobial activity, ACS applied materials & interfaces. 8, p 34791-34801 Ključne besede: Trajnostni materiali, biokompoziti, celuloza, hitosan, keratin, sporopolenin, mikrocistin Objavljeno v RUNG: 06.12.2022; Ogledov: 3397; Prenosov: 0 Gradivo ima več datotek! Več... |
4. Thermal diffusivity downscaling of molybdenum oxide thin film through annealing temperature-induced nano-lamelle formation: a photothermal beam deflection studyS. Soumya, Vimal Raj, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman, 2021, izvirni znanstveni članek Opis: The present work proposes a method of downscaling the thermal diffusivity (α)
of MoO3 thin films through annealing temperature-induced nano-lamelle formation. The
thermal diffusivity modification of the MoO3 films, prepared by the doctor blade method,
is investigated by the sensitive transverse photothermal beam deflection technique. The X-ray diffraction analysis confirms the structural phase transformation from monoclinic to
orthorhombic in the films annealed from 300 to 450 °C. The thermal induced anisotropy of
the film is evident from the variation of the morphology index and texture coefficient. The
field emission scanning electron microscopic analysis unveils the morphology modifications
from blocks to the nano-lamelle structure with layers of average thickness ~ 77 nm. The
thermal diffusivity measurement reveals a 53% reduction upon annealing the film to 450 °C.
The drastic reduction is achieved through the annealing temperature-induced nano-lamelle
formation and the phase transformation from monoclinic to orthorhombic in the MoO3 films. Ključne besede: thermal diffusivity, molybdenum oxide, thin film, nano-lamelle, photothermal beam deflection Objavljeno v RUNG: 04.07.2022; Ogledov: 1982; Prenosov: 27 Povezava na celotno besedilo Gradivo ima več datotek! Več... |
5. |
6. |
7. Critical reviews in analytical chemistry1980 Ključne besede: analitska kemija, kemijska analiza, instrumentacija, matematične metode, ravnotežje, fizika, kemijska tehnologija, materiali, ekološke znanosti, aplikacije, raziskave Objavljeno v RUNG: 28.02.2022; Ogledov: 2803; Prenosov: 0 Gradivo ima več datotek! Več... |
8. |
9. |
10. |