Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Sources and processes that control the submicron organic aerosol composition in an urban Mediterranean environment (Athens) : a high temporal-resolution chemical composition measurement study
Iasonas Stavroulas, Aikaterini Bougiatioti, Georgios Grivas, D. Paraskevopoulou, M. Tsagkaraki, Pavlos Zarmpas, Eleni Liakakou, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2019, izvirni znanstveni članek

Opis: Submicron aerosol chemical composition was studied during a year-long period (26 July 2016–31 July 2017) and two wintertime intensive campaigns (18 December 2013–21 February 2014 and 23 December 2015–17 February 2016), at a central site in Athens, Greece, using an Aerosol Chemical Speciation Monitor (ACSM). Concurrent measurements included a particle-into-liquid sampler (PILS-IC), a scanning mobility particle sizer (SMPS), an AE-33 Aethalometer, and ion chromatography analysis on 24 or 12 h filter samples. The aim of the study was to characterize the seasonal variability of the main submicron aerosol constituents and decipher the sources of organic aerosol (OA). Organics were found to contribute almost half of the submicron mass, with 30 min resolution concentrations during wintertime reaching up to 200 µg m−3. During winter (all three campaigns combined), primary sources contributed about 33 % of the organic fraction, and comprised biomass burning (10 %), fossil fuel combustion (13 %), and cooking (10 %), while the remaining 67 % was attributed to secondary aerosol. The semi-volatile component of the oxidized organic aerosol (SV-OOA; 22 %) was found to be clearly linked to combustion sources, in particular biomass burning; part of the very oxidized, low-volatility component (LV-OOA; 44 %) could also be attributed to the oxidation of emissions from these primary combustion sources. These results, based on the combined contribution of biomass burning organic aerosol (BBOA) and SV-OOA, indicate the importance of increased biomass burning in the urban environment of Athens as a result of the economic recession. During summer, when concentrations of fine aerosols are considerably lower, more than 80 % of the organic fraction is attributed to secondary aerosol (SV-OOA 31 % and LV-OOA 53 %). In contrast to winter, SV-OOA appears to result from a well-mixed type of aerosol that is linked to fast photochemical processes and the oxidation of primary traffic and biogenic emissions. Finally, LV-OOA presents a more regional character in summer, owing to the oxidation of OA over the period of a few days.
Ključne besede: ACSM, organic aerosol, PMF, source apportionment
Objavljeno v RUNG: 13.05.2024; Ogledov: 1002; Prenosov: 5
.pdf Celotno besedilo (4,65 MB)
Gradivo ima več datotek! Več...

2.
Online chemical characterization and sources of submicron aerosol in the major mediterranean port city of Piraeus, Greece
Iasonas Stavroulas, Georgios Grivas, Eleni Liakakou, Panayiotis Kalkavouras, Aikaterini Bougiatioti, Dimitris G. Kaskaoutis, Maria Lianou, Kyriaki Papoutsidaki, M. Tsagkaraki, Evangelos Gerasopoulos, Pavlos Zarmpas, Nikolaos Mihalopoulos, 2021, izvirni znanstveni članek

Opis: Port cities are affected by a wide array of emissions, including those from the shipping, road transport, and residential sectors; therefore, the characterization and apportionment of such sources in a high temporal resolution is crucial. This study presents measurements of fine aerosol chemical composition in Piraeus, one of the largest European ports, during two monthly periods (winter vs. summer) in 2018–2019, using online instrumentation (Aerosol Chemical Speciation Monitor—ACSM, 7-λ aethalometer). PMF source apportionment was performed on the ACSM mass spectra to quantify organic aerosol (OA) components, while equivalent black carbon (BC) was decomposed to its fossil fuel combustion and biomass burning (BB) fractions. The combined traffic, shipping and, especially, residential emissions led to considerably elevated submicron aerosol levels (22.8 μg m−3) in winter, which frequently became episodic late at night under stagnant conditions. Carbonaceous compounds comprised the major portion of this submicron aerosol in winter, with mean OA and BC contributions of 61% (13.9 μg m−3) and 16% (3.7 μg m−3), respectively. The contribution of BB to BC concentrations was considerable and spatially uniform. OA related to BB emissions (fresh and processed) and hydrocarbon-like OA (from vehicular traffic and port-related fossil fuel emissions including shipping) accounted for 37% and 30% of OA, respectively. In summer, the average PM1 concentration was significantly lower (14.8 μg m−3) and less variable, especially for the components associated with secondary aerosols (such as OA and sulfate). The effect of the port sector was evident in summer and maintained BC concentrations at high levels (2.8 μg m−3), despite the absence of BB and improved atmospheric dispersion. Oxygenated components yielded over 70% of OA in summer, with the more oxidized secondary component of regional origin being dominant (41%) despite the intensity of local sources, in the Piraeus environment. In general, with respect to local sources that can be the target of mitigation policies, this work highlights the importance of port-related activities but also reveals the extensive wintertime impact of residential wood burning. While a separation of the BB source is feasible, more research is needed on how to disentangle the short-term effects of different fossil-fuel combustion sources.
Ključne besede: Athens, harbor, shipping emissions, PM1, chemical speciation, organic aerosol, black carbon, ACSM, aethalometer, PMF
Objavljeno v RUNG: 10.05.2024; Ogledov: 1028; Prenosov: 4
URL Povezava na datoteko
Gradivo ima več datotek! Več...

3.
4.
5.
The effect of the averaging period for PMF analysis of aerosol mass spectrometer measurements during offline applications
Christina Vasilakopoulou, Iasonas Stavroulas, Nikolaos Mihalopoulos, Spyros N. Pandis, 2022, izvirni znanstveni članek

Opis: Offline aerosol mass spectrometer (AMS) measurements can provide valuable information about ambient organic aerosols in areas and periods in which online AMS measurements are not available. However, these offline measurements have a low temporal resolution, as they are based on filter samples usually collected over 24 h. In this study, we examine whether and how this low time resolution affects source apportionment results. We used a five-month period (November 2016–March 2017) of online measurements in Athens, Greece, and performed positive matrix factorization (PMF) analysis to both the original dataset, which consists of 30 min measurements, and to time averages from 1 up to 24 h. The 30 min results indicated that five factors were able to represent the ambient organic aerosol (OA): a biomass burning organic aerosol factor (BBOA), which contributed 16 % of the total OA; hydrocarbon-like OA (HOA) (29 %); cooking OA (COA) (20 %); more-oxygenated OA (MO-OOA) (18 %); and less-oxygenated OA (LO-OOA) (17 %). Use of the daily averages resulted in estimated average contributions that were within 8 % of the total OA compared with the high-resolution analysis for the five-month period. The most important difference was for the BBOA contribution, which was overestimated (25 % for low resolution versus 17 % for high resolution) when daily averages were used. The estimated secondary OA varied from 35 % to 28 % when the averaging interval varied between 30 min and 24 h. The high-resolution results are expected to be more accurate, both because they are based on much larger datasets and because they are based on additional information about the temporal source variability. The error for the low-resolution analysis was much higher for individual days, and its results for high-concentration days in particular are quite uncertain. The low-resolution analysis introduces errors in the determined AMS profiles for the BBOA and LO-OOA factors but determines the rest relatively accurately (theta angle around 10∘ or less).
Ključne besede: AMS, offline PMF, ACSM, organic aerosols
Objavljeno v RUNG: 10.05.2024; Ogledov: 1208; Prenosov: 6
.pdf Celotno besedilo (3,75 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.02 sek.
Na vrh