Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 27
Na začetekNa prejšnjo stran123Na naslednjo stranNa konec
1.
With AugerPrime to the phase II of the Pierre Auger Observatory
Daniele Martello, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: AugerPrime, the upgrade of the Pierre Auger Observatory, is nearing completion and the Observatory is now prepared to collect physics data after the commissioning of the new components. The Pierre Auger Observatory has demonstrated, based on the data collected thus far, the existence of the cutoff in the spectrum with high accuracy. However, the origin of this cutoff remains incompletely understood. The upgraded Observatory is designed to address the unresolved questions regarding the nature of the cosmic ray flux cutoff thanks to its capability to disentangle the muon and electromagnetic components of extensive air showers. Furthermore, the measurement of the muon component at ground level can verify the accuracy of hadronic interaction models currently used. This presentation will provide an overview of the status of the Observatory and the accurate commissioning done before the start of the physics run. Furthermore, we will present the initial data from Phase II data mainly dedicated to proving the continuity of operation of the Observatory from Phase I to Phase II.
Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, AugerPrime detector upgrade, Pierre Auger data
Objavljeno v RUNG: 24.01.2024; Ogledov: 438; Prenosov: 6
.pdf Celotno besedilo (4,23 MB)
Gradivo ima več datotek! Več...

2.
Latest results from the searches for ultra-high-energy photons and neutrinos at the Pierre Auger Observatory
Marcus Niechciol, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory is the largest air-shower experiment in the world, offering an unprecedented exposure not only to ultra-high-energy (UHE, �>10^17 eV) cosmic rays, but also to UHE neutral particles, specifically photons and neutrinos. Since the beginning of data taking almost 20 years ago, a number of searches for UHE photons and neutrinos using the different detector systems of the Observatory have been carried out. These searches led to some of the most stringent upper limits on the diffuse—i.e., direction-independent, unresolved—fluxes of photons and neutrinos in the UHE regime. These limits severely constrain current models for the origin of UHE cosmic rays and underline the capabilities of the Pierre Auger Observatory and its leading role in the context of multimessenger astronomy at the highest energies. In this contribution, we give an overview of the current activities concerning searches for UHE photons and neutrinos in the data from the Pierre Auger Observatory. The latest results of the searches for diffuse fluxes of photons and neutrinos will be shown. Furthermore, the follow- up searches for UHE photons and neutrinos in association with transient events, such as gravitational wave events, will be summarized. In addition, future perspectives in view of the ongoing AugerPrime detector upgrade will be discussed, which will further improve the sensitivity of the Pierre Auger Observatory to neutral particles at the highest energies.
Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, AugerPrime, multimessenger astronomy
Objavljeno v RUNG: 24.01.2024; Ogledov: 412; Prenosov: 6
.pdf Celotno besedilo (712,17 KB)
Gradivo ima več datotek! Več...

3.
Deep-learning-based cosmic-ray mass reconstruction using the water-Cherenkov and scintillation detectors of AugerPrime
Niklas Langner, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: At the highest energies, cosmic rays can be detected only indirectly by the extensive air showers they create upon interaction with the Earth’s atmosphere. While high-statistics measurements of the energy and arrival directions of cosmic rays can be performed with large surface detector arrays like the Pierre Auger Observatory, the determination of the cosmic-ray mass on an event-by-event basis is challenging. Meaningful physical observables in this regard include the depth of maximum of air-shower profiles, which is related to the mean free path of the cosmic ray in the atmosphere and the shower development, as well as the number of muons that rises with the number of nucleons in a cosmic-ray particle. In this contribution, we present an approach to determine both of these observables from combined measurements of water-Cherenkov detectors and scintillation detectors, which are part of the AugerPrime upgrade of the Observatory. To characterize the time-dependent signals of the two detectors both separately as well as in correlation to each other, we apply deep learning techniques. Transformer networks employing the attention mechanism are especially well-suited for this task. We present the utilized network concepts and apply them to simulations to determine the precision of the event-by-event mass reconstruction that can be achieved by the combined measurements of the depth of shower maximum and the number of muons.
Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, muons, extensive air showers, surface detectors, AugerPrime, deep learning techiniques
Objavljeno v RUNG: 23.01.2024; Ogledov: 321; Prenosov: 7
.pdf Celotno besedilo (2,93 MB)
Gradivo ima več datotek! Več...

4.
AugerPrime implementation in the DAQ systems of the Pierre Auger Observatory
Ricardo Sato, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The AugerPrime upgrade of the Pierre Auger Observatory converts the existing surface detector, consisting of an array of 1660 water-Cherenkov detectors (WCDs), into a multi-hybrid instrument. This upgrade required improved surface detector electronics and acquisition software to accommodate the new detection channels corresponding to the scintillator surface detectors, radio detector antennas, and the underground muon detectors as well as the additional, small area photomultiplier in theWCDs. In this work, we present an overview of the data acquisition software, both at the level of individual detector stations and the central data acquisition system. We highlight the modifications performed to handle the new multi-hybrid data of AugerPrime and cope with surface detector stations with different hardware configurations operating simultaneously in the array during the transition phase.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, DAQ, AugerPrime
Objavljeno v RUNG: 23.01.2024; Ogledov: 340; Prenosov: 6
.pdf Celotno besedilo (325,83 KB)
Gradivo ima več datotek! Več...

5.
Auger@TA : an Auger-like surface detector micro-array embedded within the Telescope Array Project
S. Mayotte, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory (Auger) and the Telescope Array Project (TA) are the two largest ultra-highenergy cosmic ray (UHECR) observatories in the world. One obstacle in pursuing full-sky UHECR physics is the apparent discrepancy in flux measured by the two experiments. This could be due to astrophysical differences as Auger and TA observe the Southern and Northern skies, respectively. However, the scintillation detectors used by TA have very different sensitivity to the various components of extensive air showers than the water-Cherenkov detectors (WCD) used by Auger. The discrepancy could also be due to systematic effects arising from the differing detector designs and reconstruction methods. The primary goal of the Auger@TA working group is to cross-calibrate the approaches of the two observatories using in-situ methods. This is achieved by placing a self-triggering micro-array, which consists of eight Auger surface detector stations, with both WCDs and AugerPrime scintillators, within the TA array. Seven of the WCDs use a 1-PMT prototype configuration and form a hexagon with the Auger spacing of 1.5 km. The eighth station uses a standard 3-PMT Auger WCD, placed with a TA station at the center of the hexagon to form a triplet for high-statistics, low-uncertainty, cross-calibration of instrumentation. Deployment of the micro-array took place between September 2022 and August 2023, with data-taking foreseen by the Fall of 2023. Details on the instrumentation and deployment of the micro-array, as well as its expected performance, trigger efficiencies, and event rate will be presented. First data from individual stations will also be shown.
Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, Telescope Array, AugerPrime, scintillators, water-Cherenkov detectors
Objavljeno v RUNG: 23.01.2024; Ogledov: 333; Prenosov: 6
.pdf Celotno besedilo (2,50 MB)
Gradivo ima več datotek! Več...

6.
Reconstruction of muon number of air showers with the surface detector of the Pierre Auger Observatory using neural networks
Steffen Traugott Hahn, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: To understand the physics of cosmic rays at the highest energies, it is mandatory to have an accurate knowledge of their mass composition. Since the mass of the primary particles cannot be measured directly, we have to rely on the analysis of mass-sensitive observables to gain insights into this composition. A promising observable for this purpose is the number of muons at the ground relative to that of an air shower induced by a proton primary of the same energy and inclination angle, commonly referred to as the relative muon number �μ. Due to the complexity of shower footprints, the extraction of �μ from measurements is a challenging task and intractable to solve using analytic approaches. We, therefore, reconstruct �μ by exploiting the spatial and temporal information of the signals induced by shower particles using neural networks. Using this data-driven approach permits us to tackle this task without the need of modeling the underlying physics and, simultaneously, gives us insights into the feasibility of such an approach. In this contribution, we summarize the progress of the deep-learning-based approach to estimate �μ using simulated surface detector data of the Pierre Auger Observatory. Instead of using single architecture, we present different network designs verifying that they reach similar results. Moreover, we demonstrate the potential for estimating �μ using the scintillator surface detector of the AugerPrime upgrade.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, AugerPrime, surface detector
Objavljeno v RUNG: 23.01.2024; Ogledov: 353; Prenosov: 5
.pdf Celotno besedilo (939,38 KB)
Gradivo ima več datotek! Več...

7.
Status and performance of the underground muon detector of the Pierre Auger Observatory
Joaquín De Jesús, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory, located in Malargüe, Argentina, is the largest facility for the detection of ultra-high-energy cosmic rays and has been operating successfully for nearly 20 years. For its second phase of operation, the Observatory is undergoing a major upgrade, called AugerPrime, to increase its sensitivity to the primary mass. As part of the upgrade, the Underground Muon Detector is being deployed in the low-energy extension of the Surface Detector. It consists of an array of 30 m^2 plastic scintillator muon counters buried 2.3m underground in the vicinity of the water-Cherenkov detectors. This will allow a direct measurement of the muonic component of air showers in the energy range 1016.5 eV to 1019 eV, contributing significantly to the discrimination of the primary mass and to the testing of hadronic interaction models. In this contribution, the deployment status and performance of the Underground Muon Detector are presented.
Ključne besede: surface detector, Pierre Auger Observatory, AugerPrime, underground muon detector
Objavljeno v RUNG: 22.01.2024; Ogledov: 388; Prenosov: 5
.pdf Celotno besedilo (15,44 MB)
Gradivo ima več datotek! Več...

8.
Update on the offline framework for AugerPrime and production of reference simulation libraries using the VO Auger grid resources
Eva Santos, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: Taking data stably since 2004, the Pierre Auger Observatory has published numerous results regarding the properties of ultra-high-energy cosmic rays with unprecedented statistics. However, questions about their origin and mass composition remain unanswered, motivating us to build AugerPrime, a major upgrade of our surface detector array with improved electronics and new detectors. The upgrade is swiftly approaching its completion. Phase II of the Pierre Auger Observatory has begun, which called for an update of the Offline software Framework and modules to handle the additional detectors and the new electronics. Thanks to its modular structure, Offline has proved flexible enough to accommodate all the changes required to handle AugerPrime data reconstruction and event simulation. Additionally, new reference libraries of shower and detector simulations, including dedicated libraries envisaging the searches for neutral particles, such as ultra-high-energy photons and neutrinos, profiting from the new AugerPrime detectors with the upgraded electronics, are in the pipeline. In this contribution, we report on the current status and prospects for the Auger Off line Framework and the production of reference Monte Carlo libraries for AugerPrime.
Ključne besede: AugerPrime, Pierre Auger Observatory, cosmic rays, surface detectors
Objavljeno v RUNG: 16.01.2024; Ogledov: 403; Prenosov: 7
.pdf Celotno besedilo (1,52 MB)
Gradivo ima več datotek! Več...

9.
AugerPrime surface detector electronics
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, izvirni znanstveni članek

Opis: Operating since 2004, the Pierre Auger Observatory has led to major advances in our understanding of the ultra-high-energy cosmic rays. The latest findings have revealed new insights that led to the upgrade of the Observatory, with the primary goal of obtaining information on the primary mass of the most energetic cosmic rays on a shower-by-shower basis. In the framework of the upgrade, called AugerPrime, the 1660 water-Cherenkov detectors of the surface array are equipped with plastic scintillators and radio antennas, allowing us to enhance the composition sensitivity. To accommodate new detectors and to increase experimental capabilities, the electronics is also upgraded. This includes better timing with up-to-date GPS receivers, higher sampling frequency, increased dynamic range, and more powerful local processing of the data. In this paper, the design characteristics of the new electronics and the enhanced dynamic range will be described. The manufacturing and test processes will be outlined and the test results will be discussed. The calibration of the SD detector and various performance parameters obtained from the analysis of the first commissioning data will also be presented.
Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, AugerPrime detector upgrade, surface detector array, surface detector electronics
Objavljeno v RUNG: 18.10.2023; Ogledov: 695; Prenosov: 5
.pdf Celotno besedilo (2,07 MB)
Gradivo ima več datotek! Več...

10.
Status of the AugerPrime upgrade of the Pierre Auger Observatory
Niraj Dhital, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory has been very successful in determining many aspects of the highest-energy cosmic rays including, among others, the flux suppression at energies above 4 × 10[sup]19 eV, stringent upper limits on photon and neutrino fluxes at ultra-high energies and an unexpected evolution of the mass composition with energy. We expect an extension of the frontiers of our knowledge on these aspects from a major upgrade of the Observatory. The upgrade, known as AugerPrime, will include an addition of a 4 sq. m Surface Scintillator Detector atop each water-Cherenkov station of the Surface array. The new detectors will provide us with an unprecedented opportunity to perform a complementary measurement of the shower particles and thus determine the primary mass composition with good accuracy on an event-by-event basis. AugerPrime will also include an upgrade of electronics, installation of the AMIGA Underground Muon Detector and a change of observation mode of the Fluorescence Detector, which will increase its current duty cycle by about 50%. Current status of the upgrade with the main focus on the Surface Scintillator Detectors will be presented, following a brief description of the physics motivation for the upgrade.
Ključne besede: ultra-high-energy cosmic rays (UHECRs), Pierre Auger Observatory, AugerPrime upgrade
Objavljeno v RUNG: 11.10.2023; Ogledov: 910; Prenosov: 5
.pdf Celotno besedilo (2,05 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh