1. Effect of shell thickness on the exchange bias blocking temperature and coercivity in Co-CoO core-shell nanoparticlesSenoy Thomas, K. Reethu, Thanveer Thajudheen, M. T. Z. Myint, S. H. Al-Harthi, 2017, izvirni znanstveni članek Opis: The exchange bias blocking temperature distribution of naturally oxidized Co-CoO core-shell nanoparticles exhibits two distinct signatures. These are associated with the existence of two magnetic entities which are responsible for the temperature dependence of an exchange bias field. One is from the CoO grains which undergo thermally activated magnetization reversal. The other is from the disordered spins at the Co-CoO interface which exhibits spin-glass-like behavior. We investigated the oxide shell thickness dependence of the exchange bias effect. For particles with a 3 nm thick CoO shell, the predominant contribution to the temperature dependence of exchange bias is the interfacial spin-glass layer. On increasing the shell thickness to 4 nm, the contribution from the spin-glass layer decreases, while upholding the antiferromagnetic grain contribution. For samples with a 4 nm CoO shell, the exchange bias training was minimal. On the other hand, 3 nm samples exhibited both the training effect and a peak in coercivity at an intermediate set temperature Ta. This is explained using a magnetic core-shell model including disordered spins at the interface. Ključne besede: exchange interactions, magnetic ordering, ferromagnetic materials, magnetic materials, polycrystalline material, thin films, nanoparticle, nuclear structure models, oxides, transition metals Objavljeno v RUNG: 13.12.2024; Ogledov: 324; Prenosov: 2 Povezava na datoteko Gradivo ima več datotek! Več... |
2. Probing hadronic interactions using the latest data measured by the Pierre Auger ObservatoryCaterina Trimarelli, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci Opis: The Pierre Auger Observatory is the world’s largest ultra-high energy cosmic ray observatory. Its hybrid detection technique combines the observation of the longitudinal development of extensive air showers and the lateral distribution of particles arriving at the ground. In this contribution, a review of the latest results on hadronic interactions using measurements from the Pierre Auger Observatory is given. In particular, we report on the self-consistency tests of the post-LHC models using measurements of the depth of the shower maximum and the main features of the muon component at the ground. The tensions between the model predictions and the data, considering different shower observables, are reviewed. Ključne besede: ultra-high-energy cosmic rays, hadronic interactions, extensive air showers, maximum depth, EAS muon content, Pierre Auger Observatory, post-LHC hadronic interaction models Objavljeno v RUNG: 04.10.2024; Ogledov: 604; Prenosov: 7 Celotno besedilo (1,97 MB) Gradivo ima več datotek! Več... |
3. |
4. |
5. Investigation of multi-messenger properties of FR0 radio galaxy emitted ultra-high energy cosmic raysJon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Albert Reimer, Paolo Da Vela, F. Tavecchio, G. Bonnoli, C. Righi, 2023, objavljeni znanstveni prispevek na konferenci Opis: Low luminosity Fanaroff-Riley type 0 (FR0) radio galaxies are amongst potential contributors to the observed flux of ultra-high energy cosmic rays (UHECRs). Due to FR0s’ much higher abundance in the local universe than more powerful radio galaxies (e.g., about five times more ubiquitous at redshifts z≤0.05 than FR1s), they could provide a substantial fraction of the total UHECR energy density.
In the presented work, we determine the mass composition and energy spectrum of UHECRs emitted by FR0 sources by fitting simulation results from the CRPropa3 framework to the recently published Pierre Auger Observatory data. The resulting emission spectral characteristics (spectral indices, rigidity cutoffs) and elemental group fractions are compared to the Auger results. The FR0 simulations include the approximately isotropic distribution of FR0s extrapolated from the measured FR0 galaxy properties and various extragalactic magnetic field configurations, including random and large-scale structured fields. We predict the fluxes of secondary photons and neutrinos produced during UHECR propagation through cosmic photon backgrounds. The presented results allow for probing the properties of the FR0 radio galaxies as cosmic-ray sources using observational high-energy multi-messenger data. Ključne besede: ultra-high energy cosmic rays, UHECRs, Pierre Auger Observatory, UHECR propagation, UHECR interactions, UHECR energy spectrum, UHECR mass composition, UHECR sources, Fanaroff-Riley (FR) radio galaxies, FR0 galaxies Objavljeno v RUNG: 24.01.2024; Ogledov: 1720; Prenosov: 40 Celotno besedilo (573,28 KB) Gradivo ima več datotek! Več... |
6. Studies of the mass composition of cosmic rays and proton-proton interaction cross-sections at ultra-high energies with the Pierre Auger ObservatoryOlena Tkachenko, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: In this work, we present an estimate of the cosmic-ray mass composition from the distributions of the depth of the shower maximum (�max) measured by the fluorescence detector of the Pierre Auger Observatory. We discuss the sensitivity of the mass composition measurements to the uncertainties in the properties of the hadronic interactions, particularly in the predictions of the particle interaction cross-sections. For this purpose, we adjust the fractions of cosmic-ray mass groups to fit the data with �max distributions from air shower simulations. We modify the proton-proton cross-sections at ultra-high energies, and the corresponding air shower simulations with rescaled nucleus-air cross-sections are obtained via Glauber theory. We compare the energydependent composition of ultra-high-energy cosmic rays obtained for the different extrapolations
of the proton-proton cross-sections from low-energy accelerator data. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, extensive air shower, hadronic interactions, cross-section, Xmax Objavljeno v RUNG: 23.01.2024; Ogledov: 2330; Prenosov: 6 Celotno besedilo (917,40 KB) Gradivo ima več datotek! Več... |
7. Studies of the UHECR Mass Composition and Hadronic Interactions with the FD and SD of the Pierre Auger ObservatoryJ.M. Carceller, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci Opis: With data on the depth of maximum Xmax collected during more than a decade of operation of the Pierre Auger Observatory, we report on the inferences on the mass composition of UHECRs in the energy range E = 10[sup]17.2 − 10[sup]19.6 eV and on the measurements of the proton-air cross section for energies up to 10[sup]18.5 eV. We also present the results on Xmax obtained using the information on the particle arrival times recorded by the SD stations allowing us to extend the Xmax measurements up to 10[sup]20 eV. The inferences on mass composition, in particular using the data of the SD, are subject to systematic uncertainties
due to uncertainties in the description of hadronic interactions at ultra-high energies. We
discuss this problem with respect to the properties of the muonic component of extensive
air-showers as derived from the SD data. Ključne besede: ultra-high-energy cosmic rays (UHECRs), extensive air showers (EAS), EAS muonic component, EAS electromagnetic component, Pierre Auger Observatory, UHECR mass composition, UHECR hadronic interactions Objavljeno v RUNG: 11.10.2023; Ogledov: 1982; Prenosov: 11 Celotno besedilo (128,28 KB) Gradivo ima več datotek! Več... |
8. |
9. CR-ENTREES - Cosmic-Ray ENergy TRansport in timE-Evolving astrophysical SettingsAnita Reimer, Lukas Merten, Margot Boughelilba, Paolo Da Vela, Serguei Vorobiov, Jon Paul Lundquist, 2023, objavljeni znanstveni prispevek na konferenci Opis: In order to understand observable signatures from putative cosmic-ray (CR) sources in-source
acceleration of particles, their energy and time-dependent transport including interactions in an
evolving environment and their escape from source have to be considered, in addition to sourceto-
Earth propagation.
We present the code CR-ENTREES (Cosmic-Ray ENergy TRansport in timE-Evolving astrophysical
Settings) that evolves the coupled time- and energy-dependent kinetic equations for cosmicray
nucleons, pions, muons, electrons, positrons, photons and neutrinos in a one-zone setup of
(possibly) non-constant size, with user-defined particle and photon injection laws. All relevant
interactions, particle/photon escape and adiabatic losses are considered in a radiation-dominated,
magnetized astrophysical environment that is itself evolving in time. Particle and photon interactions
are pre-calculated using event generators assuring an accurate interactions and secondary
particle production description. We use the matrix multiplication method for fast radiation and
particle energy transport which allows also an efficient treatment of transport non-linearities due
to the produced particles/photons being fed back into the simulation chain.
Examples for the temporal evolution of the non-thermal emission from AGN jet-like systems with
focus on proton-initiated pair cascades inside an expanding versus straight jet emission region, are
further presented. Ključne besede: cosmic rays, CR energy transport, CR interactions Objavljeno v RUNG: 24.08.2023; Ogledov: 1921; Prenosov: 4 Celotno besedilo (442,19 KB) Gradivo ima več datotek! Več... |
10. Efficient modeling of heavy cosmic rays propagation in evolving astrophysical environmentsLukas Merten, Paolo Da Vela, Anita Reimer, Jon Paul Lundquist, Margot Boughelilba, Serguei Vorobiov, J. Becker Tjus, 2023, objavljeni znanstveni prispevek na konferenci Opis: We present a new energy transport code that models the time dependent and non-linear evolution
of spectra of cosmic-ray nuclei, their secondaries, and photon target fields. The software can inject
an arbitrary chemical composition including heavy elements up to iron nuclei. Energy losses and
secondary production due to interactions of cosmic ray nuclei, secondary mesons, leptons, or
gamma-rays with a target photon field are available for all relevant processes, e.g., photo-meson
production, photo disintegration, synchrotron radiation, Inverse Compton scattering, and more.
The resulting x-ray fluxes can be fed back into the simulation chain to correct the initial photon
targets, resulting in a non-linear treatment of the energy transport. The modular structure of the
code facilitates simple extension of interaction or target field models.
We will show how the software can be used to improve predictions of observables in various
astrophysical sources such as jetted active galactic nuclei (AGN). Since the software can model
the propagation of heavy ultrahigh-energy cosmic rays inside the source it can precisely predict
the chemical composition at the source. This will also refine predictions of neutrino emissions
–– they strongly depend on the chemical composition. This helps in the future to optimize the
selection and analyses of data from the IceCube neutrino observatory with the aim to enhance the
sensitivity of IceCube and reduce the number of trial factors. Ključne besede: cosmic rays, low-luminosity jetted AGNCR energy transport, CR interactions Objavljeno v RUNG: 24.08.2023; Ogledov: 1718; Prenosov: 5 Celotno besedilo (1,12 MB) Gradivo ima več datotek! Več... |