Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 269
Na začetekNa prejšnjo stran12345678910Na naslednjo stranNa konec
1.
Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory
Mikhail Kuznetsov, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: Various hints for anisotropies in the distribution of arrival directions of ultra-high-energy cosmic rays (UHECRs) have been reported. Still, our poor knowledge about extragalactic and Galactic magnetic fields and about the UHECR mass composition makes it non-trivial to interpret such results in terms of possible models of UHECR sources. In this work, we apply the same analyses that have been performed on the Pierre Auger Observatory and the Telescope Array UHECR data to a variety of Monte Carlo simulations generated according to many different combinations of hypotheses about the sources, composition and magnetic deflections of UHECRs. We find that only some of these models can yield results similar to those obtained with the real data.
Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, anisotropy, galactic magnetic fields, telescope array, arrival directions
Objavljeno v RUNG: 23.01.2024; Ogledov: 359; Prenosov: 6
.pdf Celotno besedilo (1,30 MB)
Gradivo ima več datotek! Več...

2.
Update on the searches for anisotropies in UHECR arrival directions with the Pierre Auger Observatory and the Telescope Array
Lorenzo Caccianiga, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The origin of ultra-high-energy cosmic rays (UHECRs), particles from outer space with energies �≥1 EeV, is still unknown, though the near-isotropy of their arrival direction distribution excludes a dominant Galactic contribution, and interactions with background photons prevent them from travelling cosmologically large distances. This suggests that their sources must be searched for in nearby galaxy groups and clusters. Deflections by intergalactic and Galactic magnetic fields are expected to hinder such searches but not preclude them altogether. So far, the only anisotropy detected with statistical significance ≥ 5� is a modulation in right ascension in the data from the Pierre Auger Observatory at �≥8 EeV interpretable as a 7% dipole moment. Various hints for higher-energy, smaller-scale anisotropies have been reported. UHECR arrival direction data from both the Pierre Auger Observatory and the Telescope Array experiment have been searched for anisotropies by a working group with members from both collaborations; combining the two datasets requires a cross-calibration procedure due to the different systematic uncertainties on energy measurements but allows us to perform analyses that are less model-dependent than what can be done with partial sky coverage. We report a significant dipole pointing away from the Galactic Center and a ∼4.6� anisotropy found when comparing the directions of UHECRs with a catalog of starburst galaxies.
Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, anisotropy, galactic magnetic fields, telescope array, arrival directions
Objavljeno v RUNG: 23.01.2024; Ogledov: 345; Prenosov: 4
.pdf Celotno besedilo (4,36 MB)
Gradivo ima več datotek! Več...

3.
Measurement of UHECR energy spectrum with the Pierre Auger Observatory and the Telescope Array
Douglas R. Bergman, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The measurement of the energy spectrum of ultra-high-energy cosmic rays (UHECRs) is of crucial importance to clarify their origin, acceleration mechanisms, and propagation processes in inter-Galactic and Galactic space. The Pierre Auger Observatory in Argentina and the Telescope Array (TA) in the US have reported their measurements of UHECR energy spectra observed in the southern and northern hemisphere, respectively. The Auger–TA energy spectrum working group was established in 2012 and has been working to understand the uncertainties in energy scale in both experiments, their systematic differences, and differences in the shape of the spectra. In previous works, we reported that there was an overall agreement of the energy spectra measured by the two observatories below 10 EeV while at higher energies, a remaining significant difference was observed in the common declination band. This time we revisit the energy scales of both experiments, including the fluorescence yield and the invisible energy corrections. Another new approach to investigate a possible source of energy systematic difference is to reconstruct simulated showers of common energy and zenith angle using the detector simulation and reconstruction programs of both experiments that are independently tuned and optimized for data from their own detectors. The results will be presented at the conference.
Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, Telescope Array, energy spectrum
Objavljeno v RUNG: 23.01.2024; Ogledov: 425; Prenosov: 5
.pdf Celotno besedilo (731,82 KB)
Gradivo ima več datotek! Več...

4.
Radio interferometry applied to air showers recorded by the Auger engineering radio array
H. Schoorlemmer, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: A new radio interferometric technique was recently developed that takes into account time lags caused by the three-dimensional dependency of the refractive index in the atmosphere. It enables us to track the extensive air shower while it propagates through the atmosphere. Using this technique, properties of the air shower can be estimated, like the depth of maximum and the axis of propagation. In order to apply this method, strict constraints on the time-synchronisation between radio antennas in an array must be satisfied. In this contribution, we show that the Auger Engineering Radio Array can meet these timing criteria by operating a time reference beacon. We will show how this enables us to reconstruct air shower properties using the radio interferometric technique.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, Auger engineering radio array, radio interferometry
Objavljeno v RUNG: 23.01.2024; Ogledov: 321; Prenosov: 4
.pdf Celotno besedilo (1,46 MB)
Gradivo ima več datotek! Več...

5.
Auger@TA : an Auger-like surface detector micro-array embedded within the Telescope Array Project
S. Mayotte, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory (Auger) and the Telescope Array Project (TA) are the two largest ultra-highenergy cosmic ray (UHECR) observatories in the world. One obstacle in pursuing full-sky UHECR physics is the apparent discrepancy in flux measured by the two experiments. This could be due to astrophysical differences as Auger and TA observe the Southern and Northern skies, respectively. However, the scintillation detectors used by TA have very different sensitivity to the various components of extensive air showers than the water-Cherenkov detectors (WCD) used by Auger. The discrepancy could also be due to systematic effects arising from the differing detector designs and reconstruction methods. The primary goal of the Auger@TA working group is to cross-calibrate the approaches of the two observatories using in-situ methods. This is achieved by placing a self-triggering micro-array, which consists of eight Auger surface detector stations, with both WCDs and AugerPrime scintillators, within the TA array. Seven of the WCDs use a 1-PMT prototype configuration and form a hexagon with the Auger spacing of 1.5 km. The eighth station uses a standard 3-PMT Auger WCD, placed with a TA station at the center of the hexagon to form a triplet for high-statistics, low-uncertainty, cross-calibration of instrumentation. Deployment of the micro-array took place between September 2022 and August 2023, with data-taking foreseen by the Fall of 2023. Details on the instrumentation and deployment of the micro-array, as well as its expected performance, trigger efficiencies, and event rate will be presented. First data from individual stations will also be shown.
Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, Telescope Array, AugerPrime, scintillators, water-Cherenkov detectors
Objavljeno v RUNG: 23.01.2024; Ogledov: 321; Prenosov: 6
.pdf Celotno besedilo (2,50 MB)
Gradivo ima več datotek! Več...

6.
Long-term calibration and stability of the Auger Engineering Radio Array using the diffuse Galactic radio emission
R. M. de Almeida, Andrej Filipčič, Jonathan Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Auger Engineering Radio Array (AERA), part of the Pierre Auger Observatory, is currently the largest facility to measure radio emissions from ultra-high energy extensive air showers. It comprises 153 autonomous radio-detector stations, covering an area of 17 km^2, and measures radio waves in the frequency range from 30 to 80 MHz. An accurate description of the detector response is necessary to interpret the data collected by the stations correctly. Previously, this was achieved by measuring the analog chain in the laboratory and simulating and measuring the directional response of the antenna. In this work, we perform an absolute calibration using the continuously monitored sidereal modulation of the diffuse Galactic radio emission. The calibration is performed by comparing the average spectra recorded by the stations with a model of the full radio sky propagated through the system response, including the antenna, filters, and amplifiers. We describe the method to determine the calibration constants for each antenna and present the corresponding results. Furthermore, the behavior of the calibration constants is studied as a function of time. There is no relevant aging effect over a timescale of a decade, which shows that radio detectors could help monitor possible aging effects of other detector systems during long-term operations, stressing their importance in determining an absolute energy scale.
Ključne besede: pierre auger observatory, auger engineering radio array, ultra-high energy cosmic rays, radio detectors
Objavljeno v RUNG: 22.01.2024; Ogledov: 400; Prenosov: 6
.pdf Celotno besedilo (1,03 MB)
Gradivo ima več datotek! Več...

7.
Depth of maximum of air-shower profiles : testing the compatibility of the measurements at the Pierre Auger Observatory and the Telescope Array
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory (Auger) and the Telescope Array (TA), located, respectively, in the Southern and Northern hemispheres, are the largest ultra-high-energy cosmic ray (UHECR) observatories. The Auger and TA Collaborations have collected unprecedented statistics providing us with a unique opportunity to search for the differences between the UHECR energy spectra and mass compositions in the complementary sky regions. To correctly attribute such differences to the properties of the UHECR sources or propagation, the systematic effects in the measurements of each observatory should be considered properly. In this context, the task of the Auger – TA mass composition working group is to identify possible differences of astrophysical origin in the measurements of the depth of the maximum of air-shower profiles, X_max, performed at both observatories using the fluorescence technique. Due to distinct approaches to event selection and analysis atAuger and TA, theworking group uses a specially designed method to transfer the Auger X_max distributions into the TA detector. To this end, dedicated air-shower and detector simulations for the TA Black Rock Mesa and Long Ridge fluorescence detector stations were performed with the Sibyll 2.3d hadronic interaction model. From the comparison of the first two moments and the shapes of X_max distributions for energies above 10^18.2 eV, no significant differences between the Auger and TA measurements were found.
Ključne besede: Pierre Auger Observatory, Telescope Array, ultra-high energy cosmic rays, fluorescence detectors
Objavljeno v RUNG: 22.01.2024; Ogledov: 400; Prenosov: 5
.pdf Celotno besedilo (1,19 MB)
Gradivo ima več datotek! Več...

8.
9.
The Cherenkov Telescope Array
Daniel Mazin, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) is the next generation ground-based observatory for gamma-ray astronomy at very-high energies. It will be capable of detecting gamma rays in the energy range from 20 GeV to more than 300 TeV with unprecedented precision in energy and directional reconstruction. With more than 100 telescopes of three different types it will be located in the northern hemisphere at La Palma, Spain, and in the southern at Paranal, Chile. CTA will be one of the largest astronomical infrastructures in the world with open data access and it will address questions in astronomy, astrophysics and fundamental physics in the next decades. In this presentation we will focus on the status of the CTA construction, the status of the telescope prototypes and highlight some of the physics perspectives.
Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, POpulation Synthesis Theory Integrated project for very high-energy emission
Objavljeno v RUNG: 04.12.2023; Ogledov: 521; Prenosov: 3
.pdf Celotno besedilo (27,92 MB)
Gradivo ima več datotek! Več...

10.
POSyTIVE : a GRB population study for the Cherenkov Telescope Array
Maria Grazia Bernardini, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: One of the central scientific goals of the next-generation Cherenkov Telescope Array (CTA) is the detection and characterization of gamma-ray bursts (GRBs). CTA will be sensitive to gamma rays with energies from about 20 GeV, up to a few hundred TeV. The energy range below 1 TeV is particularly important for GRBs. CTA will allow exploration of this regime with a ground-based gamma-ray facility with unprecedented sensitivity. As such, it will be able to probe radiation and particle acceleration mechanisms at work in GRBs. In this contribution, we describe POSyTIVE, the POpulation Synthesis Theory Integrated project for very high-energy emission. The purpose of the project is to make realistic predictions for the detection rates of GRBs with CTA, to enable studies of individual simulated GRBs, and to perform preparatory studies for time-resolved spectral analyses. The mock GRB population used by POSyTIVE is calibrated using the entire 40-year dataset of multi-wavelength GRB observations. As part of this project we explore theoretical models for prompt and afterglow emission of long and short GRBs, and predict the expected radiative output. Subsequent analyses are performed in order to simulate the observations with CTA, using the publicly available ctools and Gammapy frameworks. We present preliminary results of the design and implementation of this project.
Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, population Synthesis Theory, very high-energy emission
Objavljeno v RUNG: 04.12.2023; Ogledov: 688; Prenosov: 1
.pdf Celotno besedilo (1,50 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh