11. Correlation between FeCl2 electrolyte conductivity and electrolysis efficiencyUroš Luin, Matjaž Valant, Iztok Arčon, 2022, objavljeni povzetek znanstvenega prispevka na konferenci Opis: The electrolysis efficiency is an important aspect of the Power-to-Solid energy storage technology (EST) based
on the iron chloride electrochemical cycle [1]. This cycle employs an aqueous FeCl2 catholyte solution for the
electro-reduction of iron. The metal iron deposits on the cathode. The energy is stored as a difference in the
redox potential of iron species. Hydrogen, as an energy carrier, is released on demand over a fully controlled
hydrogen evolution reaction between metallic Fe0 and HCl (aq) [1]. Due to these characteristics, the cycle is
suitable for long-term high-capacity and high-power energy storage. In a previous work [2] we revealed that
the electrolyte conductivity linearly increases with temperature. Contrary, the correlation between the
electrolyte concentration and efficiency is not so straightforward. Unexpectedly small efficiency variations were
found between 1 and 2.5 mol dm-3 FeCl2 (aq) followed by an abrupt efficiency drop at higher concentrations.
To explain the behavior of the observed trends and elucidate the role of FeCl2 (aq) complex ionic species we
performed in situ X-ray absorption studies. We made a dedicated experimental setup, consisting of a tubular
oven and PMMA liquid absorption cell, and performed the measurements at the DESY synchrotron P65
beamline. The XAS investigation covered XANES and EXAFS analyses of FeCl2 (aq) at different
concentrations (1 - 4 molL-1) and temperatures (25 - 80 °C). We found that at low temperature and low FeCl2
concentration the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33
(±0.02) Å and five water molecules at a distance of 2.095 (±0.005) Å [3]. The structure of the ionic complex
gradually changes with an increase in temperature and/or concentration. The apical water molecule is
substituted by a chlorine ion to yield a neutral Fe[Cl2(H2O)4]0. The transition from the single charged
Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well
correlates with the existing conductivity models [3].
[1] M. Valant, “Procedure for electric energy storage in solid matter. United States Patent and
Trademark Office. Patent No. US20200308715,” Patent No. US20200308715, 2021.
[2] U. Luin and M. Valant, “Electrolysis energy efficiency of highly concentrated FeCl2 solutions
for power-to-solid energy storage technology,” J. Solid State Electrochem., vol. 26, no. 4, pp.
929–938, Apr. 2022, doi: 10.1007/S10008-022-05132-Y.
[3] U. Luin, I. Arčon, and M. Valant, “Structure and Population of Complex Ionic Species in
FeCl2 Aqueous Solution by X-ray Absorption Spectroscopy,” Molecules, vol. 27, no. 3, 2022,
doi: 10.3390/molecules27030642. Ključne besede: Iron chloride electrochemical cycle, Power-to-Solid energy storage, XANES, EXAFS, electrical
conductivity, electrolyte complex ionic species structure and population Objavljeno v RUNG: 26.09.2022; Ogledov: 3353; Prenosov: 0 (1 glas) Gradivo ima več datotek! Več... |
12. CO[sub]2 activation over nanoshaped CeO[sub]2 decorated with nickel for low-temperature methane dry reformingKristijan Lorber, Janez Zavašnik, Iztok Arčon, Matej Huš, Janvit Teržan, Blaž Likozar, Petar Djinović, izvirni znanstveni članek Opis: Dry reforming of methane (DRM) is a promising way to
convert methane and carbon dioxide into H2 and CO (syngas). CeO2
nanorods, nanocubes, and nanospheres were decorated with 1−4 wt % Ni.
The materials were structurally characterized using TEM and in situ
XANES/EXAFS. The CO2 activation was analyzed by DFT and
temperature-programmed techniques combined with MS-DRIFTS. Synthesized CeO2 morphologies expose {111} and {100} terminating facets,
varying the strength of the CO2 interaction and redox properties, which
influence the CO2 activation. Temperature-programmed CO2 DRIFTS
analysis revealed that under hydrogen-lean conditions mono- and bidentate
carbonates are hydrogenated to formate intermediates, which decompose
to H2O and CO. In excess hydrogen, methane is the preferred reaction
product. The CeO2 cubes favor the formation of a polydentate carbonate
species, which is an inert spectator during DRM at 500 °C. Polydentate covers a considerable fraction of ceria’s surface, resulting in
less-abundant surface sites for CO2 dissociation Ključne besede: surface carbonates, in situ characterization, Ni XANES, Ni EXAFS, spectator species, CeO2 nanoshapes, CO2 activation Objavljeno v RUNG: 13.07.2022; Ogledov: 3210; Prenosov: 0 Gradivo ima več datotek! Več... |
13. Monitoring chemical processes on the atomic scale in catalysts by operando X-ray absorption spectrometryIztok Arčon, 2022, objavljeni povzetek znanstvenega prispevka na konferenci (vabljeno predavanje) Opis: X-ray absorption spectroscopy (XAS) is a powerful tool for characterisation of local structure and chemical state of selected elements in different new functional materials and biological or environmental samples. The rapid development of extremely bright synchrotron sources of X-ray and ultraviolet light in recent years has opened new possibilities for research of matter at the atomic or molecular level, indispensable in the development of new functional nanostructured materials with desired properties. The lecture will present the possibilities offered by X-ray absorption spectroscopy with synchrotron light for ex-situ and in-situ or operando characterization of various catalyst materials before, after and during their operation. With the operando XANES and EXAFS methods it is possible to track changes in the valence states and local structures of selected elements in various (photo)catalysts, during chemical reactions under controlled reaction conditions, thus gaining insight into the dynamic functional properties and reaction mechanisms of these materials. New synchrotron light sources also opened the possibility of combining X-ray absorption or emission spectroscopy and microscopy with a resolution of up to a few tens of nanometres, allowing micro-XAS analysis with high spatial resolution. Ključne besede: XAS, operando XANES, EXAFS, catalysts Objavljeno v RUNG: 01.06.2022; Ogledov: 2773; Prenosov: 0 Gradivo ima več datotek! Več... |
14. Monitoring of chemical processes at the atomic level by X-ray absorption spectrometry using extremely bright synchrotron radiation sourcesIztok Arčon, predavanje na tuji univerzi Opis: X-ray absorption spectroscopy (XAS) is a powerful tool for characterisation of local structure and chemical state of selected elements in different new functional materials and biological or environmental samples. The XAS spectroscopy is based on extremely bright synchrotron radiation X-rays sources, which allow precise characterisation of bulk, nanostructured or highly diluted samples. The rapid development of extremely bright synchrotron sources of X-ray and ultraviolet light in recent years has opened new possibilities for research of matter at the atomic or molecular level, indispensable in the development of new functional nanostructured materials with desired properties. The lecture will present the possibilities offered by X-ray absorption spectroscopy with synchrotron light for ex-situ and in-situ or operando characterization of various functional porous and other nanomaterials before, after and during their operation. Ključne besede: XAS, operando XANES, EXAFS, functional materials Objavljeno v RUNG: 01.06.2022; Ogledov: 2626; Prenosov: 0 Gradivo ima več datotek! Več... |
15. Insight into the interdependence of Ni and Al in bifunctional Ni/ZSM-5 catalysts at the nanoscaleHue-Tong Vu, Iztok Arčon, Danilo Oliveira de Souza, Simone Pollastri, Goran Dražić, Janez Volavšek, Gregor Mali, Nataša Zabukovec Logar, Nataša Novak Tušar, 2022, izvirni znanstveni članek Opis: Catalyst design is crucial for improving catalytic activity and product selectivity. In a bifunctional Ni/ZSM-5
zeolite type catalyst, catalytic properties are usually tuned via varying Al and Ni contents. While changes in
acid properties associated with Al sites are usually closely investigated, Ni phases, however, receive
inadequate attention. Herein, we present a systematic structural study of Ni in the Ni/ZSM-5 materials by
using Ni K-edge XANES and EXAFS analyses, complemented by XRD and TEM, to resolve the changes in
the local environment of Ni species induced by the different Al contents of the parent ZSM-5 prepared
by a “green”, template free technique. Ni species in Ni/ZSM-5 exist as NiO crystals (3–50 nm) and as
charge compensating Ni2+ cations. The Ni K-edge XANES and EXAFS results enabled the quantification
of Ni-containing species. At a low Al to Si ratio (nAl/nSi # 0.04), the NiO nanoparticles predominate in
the samples and account for over 65% of Ni phases. However, NiO is outnumbered by Ni2+ cations
attached to the zeolite framework in ZSM-5 with a high Al to Si ratio (nAl/nSi ¼ 0.05) due to a higher
number of framework negative charges imparted by Al. The obtained results show that the number of
highly reducible and active NiO crystals is strongly correlated with the framework Al sites present in
ZSM-5 zeolites, which depend greatly on the synthesis conditions. Therefore, this kind of study is
beneficial for any further investigation of the catalytic activities of Ni/ZSM-5 and other metal-modified
bifunctional catalysts. Ključne besede: Ni/ZSM-5 catalysts, zeolite, Ni XANES, EXAFS Objavljeno v RUNG: 11.05.2022; Ogledov: 3088; Prenosov: 52
Celotno besedilo (1,25 MB) Gradivo ima več datotek! Več... |
16. Monitoring of chemical processes at the atomic level by X-ray absorption spectrometry using extremely bright synchrotron radiation sourcesIztok Arčon, vabljeno predavanje na konferenci brez natisa Opis: X-ray absorption spectroscopy (XAS) is a powerful tool for characterisation of local structure and chemical state of selected elements in different new functional materials and biological or environmental samples. The XAS spectroscopy is based on extremely bright synchrotron radiation X-rays sources, which allow precise characterisation of bulk, nanostructured or highly diluted samples. The rapid development of extremely bright synchrotron sources of X-ray and ultraviolet light in recent years has opened new possibilities for research of matter at the atomic or molecular level, indispensable in the development of new functional nanostructured materials with desired properties. The lecture will present the possibilities offered by X-ray absorption spectroscopy with synchrotron light for ex-situ and in-situ or operando characterization of various functional porous and other nanomaterials before, after and during their operation. With the operando micro-XANES and EXAFS methods it is possible to track changes in the valence states and local structures of selected elements in different energy storage materials or in various (photo)catalysts, during chemical reactions under controlled reaction conditions, thus gaining insight into the dynamic functional properties and reaction mechanisms of these materials. New synchrotron light sources also opened the possibility of combining X-ray absorption or emission spectroscopy and microscopy with a resolution of up to a few tens of nanometres, crucial for analysis of environmental and biological samples on sub-cellular level, to understand the mechanisms of uptake, transport, accumulation, and complexation of metal cations on subcellular level in various plant tissues or accumulation in environment, to develop effective remediation approaches. Ključne besede: X-ray absorption spectroscopy, EXAFS, XANES, synchrotron radiation sources, operando Objavljeno v RUNG: 15.12.2021; Ogledov: 3404; Prenosov: 0 Gradivo ima več datotek! Več... |
17. Spectroscopic investigation of oxygen vacancies in CeO[sub]2 : dissertationThanveer Thajudheen, 2021, doktorska disertacija Opis: A unique material, ceria (CeO2), which is widely applied in automobile exhaust catalysts, is functional due to presence of defects in its crystal structure. Furthermore, the structural defects dictate electrical and chemical properties of ceria. The creation of intrinsic oxygen vacancies in ceria is responsible for oxygen-ion conductivity in solid oxide fuel cells. This unfolds the keen interest in ceria defects. Using the analytical technique cathodoluminescence spectroscopy (CLS) we can characterize ceria for its band gap and the defect states within the band gap. Since CLS has a high spatial resolution, high sensitivity to low concentration of defects and ability to obtain depth resolved information it is an obvious technique of choice.
The first part of the thesis is an introduction to the topic and description of the experimental techniques. Importance of ceria as a multifaceted material finding applications in areas spanning from energy production and conversion to biomedical applications is detailed. CLS as a tool to understand defect-related optical properties and advancement in the CL detection systems are discussed. To study the relationship between local structure and its impact on CL emission spectra, an X-ray absorption spectroscopy techniques were used. The X-ray absorption near edge structure (XANES) and the Extended x-ray absorption fine structure (EXAFS) techniques are summarized.
The second part discusses CL emission from ceria. Initially, CL emission from reduced ceria and its dependence on oxygen vacancy concentration are presented. The origin of emission was attributed to different configurations of the oxygen vacancies and polarons. The recent F center description in ceria was adopted here. The intriguing observation of CL emission quenching as a function of oxygen vacancy concentration was explained on the basis of a relative change in population of F centers in ceria. This demonstrated the relevance of local structure for the CL emission in ceria. In order to have a better understanding of the system, La-doped ceria was proposed as a model system. A precise control over the stoichiometry helped to achieve a desired oxygen vacancy concentration. The CL emission behavior, as observed in reduced ceria, was replicated in the case of La-doped ceria and the analysis revealed that F+ centers favor CL emission whereas F0 centers are disadvantageous. The local structure investigation using EXAFS analysis of both cations Ce and La (K-Edge) showed distortion from the fluorite symmetry and corroborated the F center description of oxygen vacancies in ceria. Our results provide an experimental evidence for F center description involving oxygen vacancies and polarons. Ključne besede: ceria, cathodoluminescence spectroscopy, local structure distortion, EXAFS analysis, La doped ceria, luminescence quenching, F centers, dissertations Objavljeno v RUNG: 25.11.2021; Ogledov: 4210; Prenosov: 132
Povezava na celotno besedilo Gradivo ima več datotek! Več... |
18. Resolving the dilemma of Fe-N-C catalysts by the selective synthesis of tetrapyrrolic active sites via an imprinting strategyDavide Menga, Jian Liang Low, Yan-Sheng Li, Iztok Arčon, Burak Koyutürk, Friedrich Wagner, Francisco Ruiz-Zepeda, Miran Gaberšček, Beate Paulus, Tim-Patrick Fellinger, 2021, izvirni znanstveni članek Opis: Combining the abundance and inexpensiveness of
their constituent elements with their atomic dispersion, atomically
dispersed Fe−N−C catalysts represent the most promising
alternative to precious-metal-based materials in proton exchange
membrane (PEM) fuel cells. Due to the high temperatures
involved in their synthesis and the sensitivity of Fe ions toward
carbothermal reduction, current synthetic methods are intrinsically
limited in type and amount of the desired, catalytically active Fe−
N4 sites, and high active site densities have been out of reach
(dilemma of Fe−N−C catalysts). We herein identify a paradigm
change in the synthesis of Fe−N−C catalysts arising from the
developments of other M−N−C single-atom catalysts. Supported
by DFT calculations we propose fundamental principles for the synthesis of M−N−C materials. We further exploit the proposed
principles in a novel synthetic strategy to surpass the dilemma of Fe−N−C catalysts. The selective formation of tetrapyrrolic Zn−N4
sites in a tailor-made Zn−N−C material is utilized as an active-site imprint for the preparation of a corresponding Fe−N−C catalyst.
By successive low- and high-temperature ion exchange reactions, we obtain a phase-pure Fe−N−C catalyst, with a high loading of
atomically dispersed Fe (>3 wt %). Moreover, the catalyst is entirely composed of tetrapyrrolic Fe−N4 sites. The density of
tetrapyrrolic Fe−N4 sites is more than six times as high as for previously reported tetrapyrrolic single-site Fe−N−C fuel cell catalysts Ključne besede: Fe-N-C catalysts, selective synthesis, tetrapyrrolic active sites, EXAFS, XANES, single atom, DFT Objavljeno v RUNG: 25.10.2021; Ogledov: 3406; Prenosov: 58
Povezava na celotno besedilo Gradivo ima več datotek! Več... |
19. 1,8-dihydroxy naphthalene (DHN) - melanin confers tolerance to cadmium in isolates of melanised dark septate endophytesMateja Potisek, Matevž Likar, Katarina Vogel-Mikuš, Iztok Arčon, Jože Grdadolnik, Marjana Regvar, 2021, izvirni znanstveni članek Opis: The contribution of 1,8-dihydroxy naphthalene (DHN) melanin to cadmium (Cd) tolerance in two dark septate
endophytes (DSE) of the genus Cadophora with different melanin content was investigated in vitro. The DSE
isolate Cad#148 with higher melanin content showed higher tolerance to Cd than the less melanised Cad#149.
Melanin synthesis was significantly reduced by Cd in both isolates with uninhibited melanin synthesis, in a dosedependent
manner. Inhibition of melanin synthesis by tricyclazole reduced the relative growth of Cad#148
exposed to Cd and did not affect Cad#149. Cd accumulation was not altered by tricyclazole in the two isolates,
but it increased catalase and reduced glutathione reductase activity in more melanised Cad#148, indicating
higher stress levels. In contrast, in Cad#149 the enzyme activity was less affected by tricyclazole, indicating a
more pronounced role of melanin-independent Cd tolerance mechanisms. Cd ligand environment in fungal
mycelia was analysed by extended EXAFS (X-ray absorption fine structure). It revealed that Cd was mainly bound
to O- and S-ligands, including hydroxyl, carboxyl, phosphate and thiol groups. A similar proportion of S- and Oligands
(~35% and ~65%) were found in both isolates with uninhibited melanin synthesis. Among O-ligands
two types with Cd-O-C- and Cd-O-P- coordination were identified. Tricyclazole altered Cd-O- ligand environment
in both fungal isolates by reducing the proportion of Cd-O-C- and increasing the proportion of Cd-O-P coordination.
DHN-melanin, among other tolerance mechanisms, significantly contributes to Cd tolerance in more
melanised DSE fungi by immobilising Cd to hydroxyl groups and maintaining the integrity of the fungal cell wall. Ključne besede: DSE, melanin, Cd tolerance, inhibitor tricyclazole, antioxidant enzymes, EXAFS Objavljeno v RUNG: 13.07.2021; Ogledov: 3465; Prenosov: 0 Gradivo ima več datotek! Več... |
20. Sn-modified TiO[sub]2 thin film photocatalysts prepared by low-temperature sol-gel processing : dissertationKsenija Maver, 2021, doktorska disertacija Opis: Due to many advantageous physiochemical properties, titanium dioxide (TiO2) is the most widely used photocatalyst in numerous applications, such as wastewater treatment and air purification, self-cleaning surfaces and energy conversion (H2 generation). However, one of its disadvantages is the high electron-hole recombination rate, and coupling with other semiconductors is one of the strategies to improve it. The objective of this dissertation was to investigate how the photocatalytic activity of pure TiO2 can be improved by tin modification and to explain the mechanism of increased or hindered photoactivity in correlation with the structural properties of the modified TiO2 photocatalysts.
A new low-temperature sol-gel synthesis route was developed to prepare Sn- or SnO2-modified TiO2 photocatalysts. In both cases, organic tin and titanium precursors were used. Tin in the form of Sn cations was used to prepare Sn-modified TiO2. In this case, the precursors went through the sol-gel reaction together to form a Sn-TiO2 sol. In the case of SnO2 modification, the SnO2 sol was prepared separately and additionally mixed with the TiO2 sol to form a TiO2/SnO2 bicomponent semiconductor system. Different molar ratios of tin to titanium were prepared to investigate the correlation between the tin concentration and the photocatalytic properties of the photocatalysts in the form of thin films. The results were used to optimize the synthesis conditions to obtain an improved activity of the modified TiO2 photocatalysts under UV-irradiation.
The photocatalytic activity of the thin films was determined by measuring the degradation rate of an azo dye. An increase of up to 40 % in the photocatalytic activity of the dried samples (at 150 °C) was achieved when the TiO2 was modified with the Sn or SnO2 in a concentration range of 0.1 to 1 mol.%. At higher Sn or SnO2 loadings and after calcination of the samples at 500 °C, the photocatalytic activity of the photocatalyst was reduced compared to the unmodified TiO2.
Different characterization techniques (UV-Vis, XRD, nitrogen physisorption, TEM, SEM and XAS) were employed to clarify the mechanism responsible for the enhanced and hindered photocatalytic performance of the Sn- and SnO2-modified TiO2 photocatalysts. The results showed that a nanocrystalline structure is already achieved in the samples by the low-temperature film treatment (drying at 150 °C) and that the photocatalytic efficiency is mainly influenced by the crystalline phase composition: anatase/rutile in the case of Sn-modified and TiO2/SnO2 in the case of SnO2-modified TiO2. The crystal size and specific surface area differ insignificantly between the equally thermally treated samples and partly explain the differences in photoefficiency of the calcined samples compared to the dried samples. The structural study at the atomic level, using the Sn K-edge EXAFS, revealed that Sn cations act as nucleation sites for the anatase to rutile transformation in the Sn-modified TiO2 photocatalysts, while in the SnO2-modified TiO2 samples the nanocrystalline cassiterite SnO2 is bound to the TiO2 nanocrystallites via the Sn-O-Ti bond. In both cases, the advantage of coupling the two semiconductors was achieved by separating the charge carriers and thus prolonging their lifetime for accessibility to participate in the redox reactions. The maximum activity enhancement was achieved in the low concentration range (0.1–1 mol.%), which means that an optimal ratio and contact of the two phases are obtained for the given physical parameters, such as particle size, shape and specific surface area of the catalyst. Ključne besede: Sn-modified TiO2, SnO2-modified TiO2, low-temperature sol-gel, thin films, photocatalytic activity, anatase/rutile system, Sn K-edge EXAFS, dissertations Objavljeno v RUNG: 09.06.2021; Ogledov: 7241; Prenosov: 185
Povezava na celotno besedilo Gradivo ima več datotek! Več... |