Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 6 / 6
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Bright blazar flares with CTA
M. Cerruti, Saptashwa BHATTACHARYYA, Judit Pérez-Romero, Samo Stanič, Veronika VODEB, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha ŽIVEC, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The TeV extragalactic sky is dominated by blazars, radio-loud active galactic nuclei with a relativistic jet pointing towards the Earth. Blazars show variability that can be quite exceptional both in terms of flux (orders of magnitude of brightening) and time (down to the minute timescale). This bright flaring activity contains key information on the physics of particle acceleration and photon production in the emitting region, as well as the structure and physical properties of the jet itself. The TeV band is accessed from the ground by Cherenkov telescopes that image the pair cascade triggered by the interaction of the gamma ray with the Earth’s atmosphere. The Cherenkov Telescope Array (CTA) represents the upcoming generation of imaging atmospheric Cherenkov telescopes, with a significantly higher sensitivity and larger energy coverage with respect to current instruments. It will thus provide us with unprecedented statistics on blazar light-curves and spectra. In this contribution we present the results from realistic simulations of CTA observations of bright blazar flares, taking as input state-of-the-art numerical simulations of blazar emission models and including all relevant observational constraints.
Ključne besede: active galactic nuclei (AGN), radio-loud AGN, blazars, blazar flares, cosmic particle acceleration, very-high-energy gamma-rays, Cherenkov Telescope Array
Objavljeno v RUNG: 15.09.2023; Ogledov: 87; Prenosov: 2
URL Povezava na datoteko
Gradivo ima več datotek! Več...

Studying TDEs in the era of LSST
Katja Bricman, A. Gomboc, 2019, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: The observing strategy with continuous scanning and large sky coverage of the upcoming ground-based Large Synoptic Survey Telescope (LSST) will make it a perfect tool in search of rare transients, such as Tidal Disruption Events (TDEs). Bright optical flares resulting from tidal disruption of stars by their host supermassive black hole (SMBH) can provide us with important information about the mass of the SMBH involved in the disruption and thus enable the study of quiescent SMBHs, which represent a large majority of SMBHs found in centres of galaxies. These types of transients are extremely rare, with only about few tens of candidates discovered so far. It is expected that the LSST will provide a large sample of new TDE light curves. Here we present simulations of TDE observations using an end-to-end LSST simulation framework. Based on the analysis of simulated light curves we estimate the number of TDEs with good quality light curves the LSST is expected to discover in 10 years of observations. In addition, we investigate whether TDEs observed by the LSST could be used to probe the SMBH mass distribution in the universe. The participation at this conference is supported by the Action CA16104 Gravitational waves, black holes and fundamental physics (GWverse), supported by COST (European Cooperation in Science and Technology).
Objavljeno v RUNG: 04.01.2021; Ogledov: 2076; Prenosov: 0

Flares from the centers of galaxies with Gaia and OGLE surveys
Nada Ihanec, 2018, magistrsko delo

Opis: Modern wide-field-of-view and all-sky satellites (e.g. Gaia) and ground based surveys (e.g. OGLE) repeatedly cover a large part of the sky and are detecting new, transient astrophysical sources on daily basis. In this thesis I analyzed the data from Gaia and OGLE transient surveys, with special focus on transients located near the centres of galaxies to detect possible Tidal Disruption Events. These occur when a star gets too close to a Super-Massive Black Hole, which lurks in the centres of most galaxies, and gets disrupted due to the black hole's gravitational tidal forces. The goal of my research was to detect possible Tidal Disruption Events and eliminate false candidates, such as supernovae. The work involved daily inspection of new alerts, identified with Gaia and OGLE Transient Detection System. I searched for potential transients in galactic nuclei and in case there was such a transient detected, follow-up spectroscopic observations were initiated in order to help classify the object. During the course of my work I analyzed spectra obtained with the largest telescopes in the world (SALT, VLT) and performed the spectral template matching, recognition of spectral features related to known classes of transients, determination of redshift etc.
Ključne besede: Flares, transients, Gaia, OGLE, supernovae, tidal disruption events, nuclear transients
Objavljeno v RUNG: 14.05.2019; Ogledov: 3521; Prenosov: 126
.pdf Celotno besedilo (8,11 MB)

Iskanje izvedeno v 0.04 sek.
Na vrh