Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


21 - 26 / 26
Na začetekNa prejšnjo stran123Na naslednjo stranNa konec
21.
22.
PHOTO-EXCITATION ENERGY INFLUENCE ON THE PHOTOCONDUCTIVITY OF ORGANIC SEMICONDUCTORS
Nadiia Pastukhova, 2018, doktorska disertacija

Opis: In this work, we experimentally studied the influence of photoexcitation energy influence on the charge transport in organic semiconductors. Organic semiconductors were small molecules like corannulene, perylene and pentacene derivatives, polymers such as polythiophene and benzothiophene derivatives, and graphene, along with combinations of these materials in heterojunctions or composites. The first part of this study is focused on the photoexcitation energy influence on the transient photoconductivity of non-crystalline curved π-conjugated corannulene layers. The enhanced photoconductivity, in the energy range where optical absorption is absent, is deduced from theoretical predictions of corannulene gas-phase excited state spectra. Theoretical analysis reveals a consistent contribution involving transitions to Super Atomic Molecular Orbitals (SAMOs), a unique set of diffuse orbitals typical of curved π-conjugated molecules. More, the photoconductivity of the curved corannulene was compared to the π-conjugated planar N,N′-1H,1H- perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2), where the photoexcitation energy dependence of photocurrent closely follows the optical absorption spectrum. We next characterized charge transport in poly(3-hexylthiophene) (P3HT) layers deposited from solution. Our results indicate that time-of-flight (TOF) mobility depends on the photoexcitation energy. It is 0.4× 10 −3 cm 2 /Vs at 2.3 eV (530 nm) and doubles at 4.8 eV (260 nm). TOF mobility was compared to field-effect (FET) mobility of P3HT field-effect transistors (OFETs). The FET mobility was similar to the 2.3 eV excitation TOF mobility. In order to improve charge mobility, graphene nanoparticles were blended within a P3HT solution before the deposition. We found that the mobility significantly improves upon the addition of graphene nanoparticles of a weight ratio as low as 0.2 %. FET mobility increases with graphene concentration up to a value of 2.3× 10 −2 cm 2 /Vs at 3.2 %. The results demonstrate that phase segregation starts to influence charge transport at graphene concentration of 0.8 % and above. Hence, the graphene cannot form a bridged conduction channel between electrodes, which would cancel the semiconducting effect of the polymer composite. An alternative approach to enhance mobility is to optimize the molecular ordering of organic semiconductors. For that purpose, we studied an innovative nanomesh device. Free-standing nanomesh devices were used to form nanojunctions of N,N′- iiDioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) nanowires and crystalline bis(triisopropylsilylethinyl)pentacene (TIPS-PEN). We characterized the photocurrent response time of this novel nanomesh scaffold device. The photoresponse time depends on the photon energy. It is between 4.5 − 5.6 ns at 500 nm excitation wavelength and between 6.7 − 7.7 ns at 700 nm excitation wavelength. In addition, we found that thermal annealing reduces charge carrier trapping in crystalline nanowires. This confirms that the structural defects are crucial to obtaining high photon-to-charge conversion efficiency and subsequent transport from pn junction in heterostructured materials. Structural defects also influence the power conversion efficiency of organic heterostructured photovoltaics (OPVs). Anticipating that polymers with different backbone lengths produce different level of structural defects, we examined charge transport dependence on the molecular weight of poly[4,8-bis(5-(2- ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2- ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl] (PTB7-Th) from 50 kDa to 300 kDa. We found p-type hopping transport in PTB7-Th, characterized by 0.1 – 3× 10 −2 cm 2 /Vs mobility, which increases with temperature and electric field. The polymer molecular weight exhibits a non-trivial influence on charge transport. FET mobility in the saturation regime increases with molecular weight. A similar trend is observed in TOF mobility and FET mobility in the linear regime, except for the 100kDa polymer, which manifests in the highest mobility due to reduced charge trapping. The lowest trapping at the dielectric interface of OFET is observed at 200 kDa. In addition, the 200 kDa polymer exhibits the lowest activation energy of the charge transport. Although the 100 kDa polymer indicates the highest mobility, OPVs using the 200 kDa polymer exhibit the best performance in terms of power conversion efficiency.
Ključne besede: organic semiconductors, optical absorption spectroscopy, time-of-flight photoconductivity, transient photocurrent spectroscopy, organic thin film transistors, atomic force microscopy, superatomic molecular orbitals, pn heterojunction, organic nanowires, graphene, composites, charge mobility, charge trapping, temperature dependence, photodetector, photovoltaic, solar cell, organic electronics
Objavljeno v RUNG: 08.10.2018; Ogledov: 5377; Prenosov: 163
.pdf Celotno besedilo (4,56 MB)

23.
24.
Interface-controlled growth of organic semiconductors on graphene
Jinta Mathews, Saim Emin, Egon Pavlica, Matjaž Valant, Gvido Bratina, 2017, izvirni znanstveni članek

Opis: We have studied submonolayer coverages of N,N-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) on mechanically exfoliated graphene transferred onto SiO2 substrates. Our atomic force microscopy (AFM) data show that PDIF-CN2 forms irregularly-shaped 1.4 nm-high islands. From the selected area diffraction performed with transmission electron microscope (TEM) we conclude that this height corresponds to π−π stacks of molecules, which are inclined for 43° relative to the graphene surface. AFM also showed complete absence of PDIF-CN2 on single-layer graphene (SLG). Electric force microscopy revealed a marked difference in surface charge density between a single-layer graphene and bilayer graphene, with a higher surface charge on SLG than on the bilayer graphene. We associate this behavior with p− type doping of graphene due to the electrostatic dipole induced by the molecular water layer present at the graphene/SiO2 interface. The crucial role of the graphene/SiO2 interface in determining growth of PDIF-CN2 was further confirmed by TEM examination of PDIF-CN2 deposited onto unsupported SLG.
Ključne besede: afm, organic semiconductors, graphene
Objavljeno v RUNG: 18.05.2017; Ogledov: 4757; Prenosov: 0
Gradivo ima več datotek! Več...

25.
HETEROGENEOUS PHOTOCATALYTIC OXIDATION FOR THE REMOVAL OF BISPHENOL A FROM AQUEOUS SOLUTION OVER TiO2/GRAPHENE OXIDE (GO) BASED NANOCOMPOSITES
Ana Veternik, 2017, magistrsko delo

Opis: Since water is an essential substance for all life on earth, it is therefore vital to prevent its pollution and to improve wastewater purification processes. There is a vast number of pollutants which can contaminate water, of which bisphenol A (known as an endocrine disruptor) is the pollutant studied herein. In this study, several TiO2/GO based nanocomposites with various GO loadings (2, 4, 10, 20 and 40%) and differently shaped nanocrystalline TiO2 phases (titanate nanotubes (TNTs) and calcined titanate nanotubes (TNTs_500)) were synthesised. All of the nanocomposites were characterised through SEM, UV-vis-DR, TGA, BET, FT-IR and CHNS analyses and were used in the heterogeneous photocatalytic degradation of bisphenol A and compared to the activity of pure TNTs and TNT_500 photocatalysts. All TiO2/GO nanocomposites exhibit much better activity than pure TNTs and TNTs_500 catalysts. The conversion of the BPA was analysed using HPLC and the mineralisation was analysed using a TOC analysis. The best experiment was performed with TNTs_500 + 10% GO composite, which can be attributed to the TiO2 crystalline structure obtained. According to the results obtained, TiO2 + 10% GO was found to exhibit the best degradation ratio, which can be ascribed to the fact that excessive GO can act as a charge carrier recombination centre and promotes the recombination of electron-hole pairs in reduced GO.
Ključne besede: heterogeneous photocatalysis, titanium dioxide, graphene oxide, bisphenol A
Objavljeno v RUNG: 23.02.2017; Ogledov: 5721; Prenosov: 289
.pdf Celotno besedilo (2,96 MB)

26.
THE MORPHOLOGY DEPENDENCE ON GROWTH PARAMETERS IN NANOSTRUCTURED SEMICONDUCTORS
Miha Gunde, 2014, diplomsko delo

Opis: Poly(3-hexylthiophene) (P3HT) is an organic semiconductor material that is widely studied in the photovoltaics and transistor fields of research. The polymer exhibits a relatively high charge carrier mobility when the molecules are ordered in a crystalline way. In this case the material exhibits a fibril-like morphology, which is usually studied by atomic force microscopy (AFM). Previous studies show that blending P3HT with graphene can further improve the charge carrier transport properties of the film. In this experiment, the scanning electron microscope (SEM) has been chosen, due to its practical aspects such as speed of operation and ease of use. Three sets of samples have been analyzed, containing films made of P3HT+graphene blends at different concentrations. The aims of the experiment are: i) to find good conditions for the observation of the morphology features of the film ii) to perform a morphological analysis of the surface of three sets of samples containing both pure P3HT, and P3HT+graphene blend, and possibly to highlight correlation between morpholgy and the charge transport properties. Surface analysis is done by detecting the secondary electron (SE) emission, which is sensitive to topographical features of the surface. Good observation conditions were established by coating the specimen with a thin layer of conductive coating, using a high energy beam (30 keV), and tilting the sample to an angle (30 ◦ ). In two out of three of the analyzed pure P3HT films, the presence of fibrilles indicated a possibly good charge mobility, which has been confirmed by electrical measurements using time-of-flight photoconductivity method (TOF). The presence of graphene has only slightly modified morphology of the film. Features of graphene flakes, which lie flat in the film, have been observed such as flake edges and folds. The flakes are homogeneously dispersed in the film without forming any connected network. TOF measurements have shown an increase in mobility of the charge carriers in the P3HT+graphene film.
Ključne besede: scanning electron microscope, organic semiconductor thin film, P3HT, graphene, morphology
Objavljeno v RUNG: 01.12.2016; Ogledov: 6410; Prenosov: 168
.pdf Celotno besedilo (30,93 MB)

Iskanje izvedeno v 0.04 sek.
Na vrh