Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Thermal Lensing of Multi-Walled Carbon Nanotube Solutions as Heat-Transfer Nanofluids
SANKARARAMAN SANKARANARAYANA IYER, CABRERA HUMBERTO, RAJ VIMAL, Swapna Mohanachandran Nair Sindhu, 2021, izvirni znanstveni članek

Opis: This paper unwraps nanofluids’ particle dynamics with multi-walled carbon nanotubes (MWCNTs) in base fluids such as acetone, water, and ethylene glycol. Having confirmed the morphology and structure of the MWCNTs by field emission scanning electron microscopy, X-ray diffraction, and Raman spectroscopic analyses, the nanofluids are prepared in three different concentrations. The nonzero absorbance at the laser wavelength, revealed through the UV−visible spectrum, makes the thermal diffusivity study of the sample by the sensitive nondestructive single beam thermal lens (TL) technique possible. The TL signal analysis by time series and fractal techniques divulges the complex particle dynamics, through phase portrait, sample entropy, fractal dimension, and Hurst exponent. The study unveils the effect of the amount of nanoparticles and the viscosity of the medium on thermal diffusivity and particle dynamics. The observed inverse relation between thermal diffusivity and viscosity is in good agreement with the Sankar−Swapna model. The complexity of particle dynamics in MWCNT nanofluids reflected through sample entropy, and fractal dimension shows an inverse relation to the base fluid’s viscosity. This paper investigates the role of viscosity of the base fluid on particle dynamics and thermal diffusivity of the nanofluid to explore its applicability in various thermal systems, thereby suggesting a method to tune the sample entropy through proper selection of base fluid.
Najdeno v: ključnih besedah
Povzetek najdenega: ...unwraps nanofluids’ particle dynamics with multi-walled carbon nanotubes ( MWCNTs) in base fluids such as acetone, water, and...
Ključne besede: MWCNT, thermal lens, fractals, nonlinear time series, phase portrait, sample entropy
Objavljeno: 28.06.2022; Ogledov: 315; Prenosov: 0
.pdf Polno besedilo (3,59 MB)

2.
Downscaling of sample entropy of nanofluids by carbon allotropes
Sankaranarayana Iyer Sankararaman, K. Satheesh Kumar, S. Sreejyothi, Vimal Raj, Mohanachandran Nair Sindhu Swapna, 2020, izvirni znanstveni članek

Opis: The work reported in this paper is the first attempt to delineate the molecular or particle dynamics from the thermal lens signal of carbon allotropic nanofluids (CANs), employing time series and fractal analyses. The nanofluids of multi-walled carbon nanotubes and graphene are prepared in base fluid, coconut oil, at low volume fraction and are subjected to thermal lens study. We have studied the thermal diffusivity and refractive index variations of the medium by analyzing the thermal lens (TL) signal. By segmenting the TL signal, the complex dynamics involved during its evolution is investigated through the phase portrait, fractal dimension, Hurst exponent, and sample entropy using time series and fractal analyses. The study also explains how the increase of the photothermal energy turns a system into stochastic and antipersistent. The sample entropy (S) and refractive index analyses of the TL signal by segmenting into five regions reveal the evolution of S with the increase of enthalpy. The lowering of S in CAN along with its thermal diffusivity (50%–57% below) as a result of heat-trapping suggests the technique of downscaling sample entropy of the base fluid using carbon allotropes and thereby opening a novel method of improving the efficiency of thermal systems.
Najdeno v: ključnih besedah
Povzetek najdenega: ...carbon allotropic nanofluids, time series, entropy, MWCNT, thermal lens signal...
Ključne besede: carbon allotropic nanofluids, time series, entropy, MWCNT, thermal lens signal
Objavljeno: 30.06.2022; Ogledov: 236; Prenosov: 0
.pdf Polno besedilo (4,22 MB)

3.
Development of Zinc Oxide-Multi-Walled Carbon Nanotube hybrid nanofluid for energy-efficient heat transfer application: A thermal lens study
Swapna Mohanachandran Nair Sindhu, 2021, izvirni znanstveni članek

Opis: This paper addresses the need for developing an energy-efficient hybrid nanofluid with zinc oxide–multi-walled carbon nanotube (ZnO-MWCNT) for overcoming the bottleneck of efficient heat transfer in thermal systems. The concentration-dependent thermal diffusivity modifications are analyzed using the highly sensitive mode mismatched thermal lens technique. The hybrid composite is prepared by the solid-state mixing and annealing of a pure multi-walled carbon nanotube (MWCNT) and zinc oxide (ZnO), synthesized by the solution combustion method. The composite formation is studied by structural, morphological, and optical characterization techniques. Among the three nanofluids ZnO, MWCNT, and ZnO-MWCNT, the composite exhibits a drastic enhancement in thermal diffusivity at a lower solid volume fraction of 0.047 mg/ml containing 0.009 mg/ml of MWCNT. All the nanofluids show an optimum concentration beyond which the thermal diffusivity decreases with the nanoparticle concentration. Thus, this study suggests the potential application of ZnO-MWCNT hybrid nanofluids in thermal system design to enhance internal combustion engines' efficiency during cold-start.
Najdeno v: ključnih besedah
Povzetek najdenega: ...hybrid nanofluid with zinc oxide–multi-walled carbon nanotube (ZnO- MWCNT) for overcoming the bottleneck of efficient heat...
Ključne besede: Zinc Oxide, MWCNT, hybrid nanofluid, thermal lens, diffusivity, engine efficiency
Objavljeno: 30.06.2022; Ogledov: 274; Prenosov: 0
.pdf Polno besedilo (2,44 MB)

Iskanje izvedeno v 0 sek.
Na vrh