Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 58
Na začetekNa prejšnjo stran123456Na naslednjo stranNa konec
1.
Inference of the Mass Composition of Cosmic Rays with Energies from 10[sup]18.5 to 10[sup]20 eV Using the Pierre Auger Observatory and Deep Learning
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, izvirni znanstveni članek

Opis: We present measurements of the atmospheric depth of the shower maximum Xmax, inferred for the first time on an event-by-event level using the Surface Detector of the Pierre Auger Observatory. Using deep learning, we were able to extend measurements of the Xmax distributions up to energies of 100 EeV (10[sup]20 eV), not yet revealed by current measurements, providing new insights into the mass composition of cosmic rays at extreme energies. Gaining a 10-fold increase in statistics compared to the Fluorescence Detector data, we find evidence that the rate of change of the average Xmax with the logarithm of energy features three breaks at 6.5 ± 0.6 (stat) ± 1 (sys) EeV, 11 ± 2 (stat) ± 1 (sys) EeV, and 31 ± 5 (stat) ± 3 (sys) EeV, in the vicinity to the three prominent features (ankle, instep, suppression) of the cosmic-ray flux. The energy evolution of the mean and standard deviation of the measured Xmax distributions indicates that the mass composition becomes increasingly heavier and purer, thus being incompatible with a large fraction of light nuclei between 50 EeV and 100 EeV.
Ključne besede: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, UHECR mass composition, depth of the shower maximum, fluorescence detector, surface detector, deep learning
Objavljeno v RUNG: 20.01.2025; Ogledov: 161; Prenosov: 0
.pdf Celotno besedilo (586,04 KB)
Gradivo ima več datotek! Več...

2.
Measurement of the depth of maximum of air-shower profiles with energies between ▫$10^{18.5} and 10^{20}$▫ eV using the surface detector of the Pierre Auger Observatory and deep learning
A. Abdul Halim, P. Abreu, M. Aglietta, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, izvirni znanstveni članek

Opis: We report an investigation of the mass composition of cosmic rays with energies from 3 to 100 EeV (1 EeV = 10[sup]18 eV) using the distributions of the depth of shower maximum Xmax. The analysis relies on ∼50,000 events recorded by the surface detector of the Pierre Auger Observatory and a deep-learning-based reconstruction algorithm. Above energies of 5 EeV, the dataset offers a 10-fold increase in statistics with respect to fluorescence measurements at the Observatory. After cross-calibration using the fluorescence detector, this enables the first measurement of the evolution of the mean and the standard deviation of the Xmax distributions up to 100 EeV. Our findings are threefold: (i) The evolution of the mean logarithmic mass toward a heavier composition with increasing energy can be confirmed and is extended to 100 EeV. (ii) The evolution of the fluctuations of Xmax toward a heavier and purer composition with increasing energy can be confirmed with high statistics. We report a rather heavy composition and small fluctuations in Xmax at the highest energies. (iii) We find indications for a characteristic structure beyond a constant change in the mean logarithmic mass, featuring three breaks that are observed in proximity to the ankle, instep, and suppression features in the energy spectrum.
Ključne besede: ultra-high-energy cosmic rays, UHECRs, extensive air showers, Pierre Auger Observatory, UHECR mass composition, depth of shower maximum, fluorescence detector, surface detector, deep learning
Objavljeno v RUNG: 20.01.2025; Ogledov: 172; Prenosov: 0
.pdf Celotno besedilo (2,71 MB)
Gradivo ima več datotek! Več...

3.
Performance of the Cherenkov Telescope Array
G. Maier, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) is expected to become the by far largest and most sensitive observatory for very-high-energy gamma rays in the energy range from 20 GeV to more than 300 TeV. CTA will be capable of detecting gamma rays from extremely faint sources with unprecedented precision on energy and direction. The performance of the future observatory derived from detailed Monte Carlo simulations is presented in this contribution for the two CTA sites located on the island of La Palma (Spain) and near Paranal (Chile). This includes the evaluation of CTA sensitivity over observations pointing towards different elevations and for operations at higher night-sky background light levels.
Ključne besede: very-high-energy gamma rays, the Cherenkov Telescope Array (CTA) Observatory, detector performances
Objavljeno v RUNG: 07.11.2024; Ogledov: 421; Prenosov: 4
.pdf Celotno besedilo (452,81 KB)
Gradivo ima več datotek! Več...

4.
Expected performance of the Auger Radio Detector
Felix Schlüter, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Auger Radio Detector (RD) will increase the sky coverage and overall aperture for mass- sensitive measurements of ultra-high-energy cosmic rays with the Pierre Auger Observatory. The installation of over 1600 dual-polarized short aperiodic loaded loop antennas (SALLAs) on an area of about 3000 sq. km will enable the detection of highly inclined air showers via the emitted electromagnetic radiation in coincidence with the Auger water-Cherenkov detector array (SD). The combination of complementary information from both detectors yields a strong sensitivity to the mass composition of cosmic rays. We will present the expected performance of the RD to detect and reconstruct inclined air showers. This study features comprehensive sets of Monte-Carlo generated air showers, utilizes a complete description of the instrumental response of the radio antennas, and in-situ recorded background. The estimation of an energy- and direction-dependent aperture yields an expectation of about 3900 events with energies above 10[sup]19 eV being detected during 10 years of operation. From a full event reconstruction, we quantify the achievable energy resolution to be better than 10% at and beyond 10[sup]19 eV. With this at hand, the potential to measure the number of muons and discriminate between different cosmic-ray primaries in combination with the SD using inclined air showers is presented. The discrimination between proton- and iron-induced air showers yields a figure-of-merit of 1.6.
Ključne besede: Pierre Auger Observatory, ultra-high-energy cosmic rays, extensive air showers, Auger Radio Detector, Auger water-Cherenkov detector array, mass-sensitive UHECR measurements
Objavljeno v RUNG: 03.10.2024; Ogledov: 600; Prenosov: 6
.pdf Celotno besedilo (917,68 KB)
Gradivo ima več datotek! Več...

5.
With AugerPrime to the phase II of the Pierre Auger Observatory
Daniele Martello, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: AugerPrime, the upgrade of the Pierre Auger Observatory, is nearing completion and the Observatory is now prepared to collect physics data after the commissioning of the new components. The Pierre Auger Observatory has demonstrated, based on the data collected thus far, the existence of the cutoff in the spectrum with high accuracy. However, the origin of this cutoff remains incompletely understood. The upgraded Observatory is designed to address the unresolved questions regarding the nature of the cosmic ray flux cutoff thanks to its capability to disentangle the muon and electromagnetic components of extensive air showers. Furthermore, the measurement of the muon component at ground level can verify the accuracy of hadronic interaction models currently used. This presentation will provide an overview of the status of the Observatory and the accurate commissioning done before the start of the physics run. Furthermore, we will present the initial data from Phase II data mainly dedicated to proving the continuity of operation of the Observatory from Phase I to Phase II.
Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, AugerPrime detector upgrade, Pierre Auger data
Objavljeno v RUNG: 24.01.2024; Ogledov: 2584; Prenosov: 12
.pdf Celotno besedilo (4,23 MB)
Gradivo ima več datotek! Več...

6.
Measurement of the mass composition of ultra-high-energy cosmic rays at the Pierre Auger Observatory
Eric Mayotte, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: After nearly 20 years of data-taking, the measurements made with the Pierre Auger Observatory represent the largest collection of ultra-high-energy cosmic ray (UHECR) data so far assembled from a single instrument. Exploring this data set led to a deeper understanding of the UHECR flux and many surprises. In particular, studies aiming to investigate and leverage the mass composition of UHECRs have played an important role in empowering discovery. This contribution will present an overview of the analyses of primary mass composition carried out during the first phase of the Observatory. The overview includes analyses derived from measurements made by the surface, fluorescence, and radio detectors covering energies ranging from 0.1 EeV up to 100 EeV. Special attention will be given to recent advances and results to provide a complete picture of UHECR mass composition at the Observatory as it moves to its next phase, AugerPrime. Additionally, specific updates will be given to studies focusing on mass trends from surface detector rise-times, �max dependent anisotropies, and UHECR beam characterization using the correlation between �max and signal amplitudes at the ground.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, AERA, water-Cherenkov detector
Objavljeno v RUNG: 23.01.2024; Ogledov: 1361; Prenosov: 5
.pdf Celotno besedilo (1,03 MB)
Gradivo ima več datotek! Več...

7.
Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger Observatory
Marvin Gottowik, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: In this proceeding, we present a proof of principle study for estimating the number of muons of inclined air showers proportional to their energy using hybrid radio and particle detection. We use the radiation energy of an air shower to estimate its electromagnetic energy and measure the muon number independently with the water-Cherenkov detector array (WCD) of the Pierre Auger Observatory. We select 32 high-quality events in almost six years of data with electromagnetic energies above 4 EeV to ensure full efficiency for the WCD reconstruction. The muon content in data is found to be compatible with the one for an iron primary as predicted by current-generation hadronic interaction models. This can be interpreted as a deficit of muons in simulations as a lighter mass composition is expected from �max measurements. Such a muon deficit was already observed in previous analyses of the Auger collaboration and is now confirmed for the first time with radio data. Currently, this analysis is limited by low statistics due to the small area of AERA of 17 km^2 and the high energy threshold. We will outline the advantages of using radio detection instead of the Auger Fluorescence Detector in future analyses allowing for high-statistic measurements of the muon content as a function of energy.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, AERA, water-Cherenkov detector
Objavljeno v RUNG: 23.01.2024; Ogledov: 1776; Prenosov: 7
.pdf Celotno besedilo (1,49 MB)
Gradivo ima več datotek! Več...

8.
Status and expected performance of the AugerPrime radio detector
Jannis Pawlowsky, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The ongoing AugerPrime upgrade of the Pierre Auger Observatory will yield sensitivity and precision for measuring ultra-high energy (UHE) cosmic rays that are significantly improved over the baseline design. A key part is the installation of the Radio Detector (RD), consisting of loop antennas mounted on top of each of the 1660 water-Cherenkov detectors (WCD). These antennas, with polarizations both parallel and perpendicular to Earth’s magnetic field, are sensitive to inclined air showers and will also improve the sky coverage and exposure of the observatory. Of special interest is the great sensitivity to the electromagnetic component of air showers, yielding new information for the reconstruction of the primary mass, energy and arrival direction. Complementing traditional particle detectors like the WCD, the combination of both yields new opportunities to detect rare primary particles, e.g. UHE photons and neutrinos with a large identification probability. Here we present the status and future prospects of the RD.With mass production and deployment ongoing, we showair shower statistics and reconstructions of the already installed detector stations. We detail the layout and integration of the RD, demonstrating the potential of the observatory including radio measurements and RD triggering, especially to detect air showers with weak particle footprints. We show that the new trigger enables the measurement of events for which traditional particle detectors are less sensitive.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, radio detector, air shower
Objavljeno v RUNG: 23.01.2024; Ogledov: 1388; Prenosov: 6
.pdf Celotno besedilo (7,29 MB)
Gradivo ima več datotek! Več...

9.
Depth of maximum of air-shower profiles above ▫$10^{17.8}$▫ eV measured with the fluorescence detector of the Pierre Auger Observatory and mass-composition implications
Thomas Fitoussi, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: After seventeen years of operation, the first phase of measurements at the PierreAuger Observatory finished and the process of upgrading it began. In this work, we present distributions of the depth of air-shower maximum, �max, using profiles measured with the fluorescence detector of the Pierre Auger Observatory. The analysis is based on the Phase I data collected from 01 December 2004 to 31 December 2021. The �max measurements take advantage of an improved evaluation of the vertical aerosol optical depth and reconstruction of the shower profiles. We present the energy dependence of the mean and standard deviation of the �max distributions above 10^(17.8) eV. Both �max moments are corrected for detector effects and interpreted in terms of the mean logarithmic mass and variance of the masses by comparing them to the predictions of post-LHC hadronic interaction models. We corroborate our earlier findings regarding the change of the elongation rate of the mean �max at 10^(18.3) eV with higher significance. We also confirm, with four more years of data compared to the last results presented in 2019, that around the ankle in the cosmic rays spectrum, the proton component gradually disappears and that intermediate mass nuclei dominate the composition at ultra-high energies.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, protons, surface detector
Objavljeno v RUNG: 23.01.2024; Ogledov: 1402; Prenosov: 8
.pdf Celotno besedilo (1,16 MB)
Gradivo ima več datotek! Več...

10.
Reconstruction of muon number of air showers with the surface detector of the Pierre Auger Observatory using neural networks
Steffen Traugott Hahn, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: To understand the physics of cosmic rays at the highest energies, it is mandatory to have an accurate knowledge of their mass composition. Since the mass of the primary particles cannot be measured directly, we have to rely on the analysis of mass-sensitive observables to gain insights into this composition. A promising observable for this purpose is the number of muons at the ground relative to that of an air shower induced by a proton primary of the same energy and inclination angle, commonly referred to as the relative muon number �μ. Due to the complexity of shower footprints, the extraction of �μ from measurements is a challenging task and intractable to solve using analytic approaches. We, therefore, reconstruct �μ by exploiting the spatial and temporal information of the signals induced by shower particles using neural networks. Using this data-driven approach permits us to tackle this task without the need of modeling the underlying physics and, simultaneously, gives us insights into the feasibility of such an approach. In this contribution, we summarize the progress of the deep-learning-based approach to estimate �μ using simulated surface detector data of the Pierre Auger Observatory. Instead of using single architecture, we present different network designs verifying that they reach similar results. Moreover, we demonstrate the potential for estimating �μ using the scintillator surface detector of the AugerPrime upgrade.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, AugerPrime, surface detector
Objavljeno v RUNG: 23.01.2024; Ogledov: 1740; Prenosov: 7
.pdf Celotno besedilo (939,38 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.04 sek.
Na vrh