1. Galactic transient sources with the Cherenkov Telescope Array ObservatoryK. Abe, Saptashwa Bhattacharyya, Christopher Eckner, Judit Pérez Romero, Samo Stanič, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2025, izvirni znanstveni članek Opis: A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low- and high-mass X-ray binaries containing compact objects, isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar-wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array Observatory (CTAO) and the prospects for studying them with Target of Opportunity observations. We show that CTAO will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. Since some of these sources could also exhibit emission at larger time-scales, we additionally test their detectability at longer exposures. We finally discuss the multiwavelength synergies with other instruments and large astronomical facilities. Ključne besede: very-high-energy gamma-rays, Cherenkov Telescope Array Observatory, galactic transient sources, microquasars, X-ray binaries, flaring emission, crab pulsar-wind nebula, novae explosions Objavljeno v RUNG: 21.05.2025; Ogledov: 32; Prenosov: 0
Celotno besedilo (6,79 MB) Gradivo ima več datotek! Več... |
2. The Barcelona Raman LIDAR project and its prospects for the CTAO-NorthDarko Kolar, Otger Ballester, O. Blanch Bigas, Joan Boix, Paolo G. Calisse, Anna Campoy-Ordaz, M. Doro, Samo Stanič, Marko Zavrtanik, Miha Živec, 2025, objavljeni znanstveni prispevek na konferenci Opis: The Cherenkov Telescope Array Observatory (CTAO) is a next-generation facility comprised of ground-based Imaging Atmospheric Cherenkov Telescopes (IACTs). The observatory, currently under construction, will include more than 70 telescopes at two locations: in the northern hemisphere, CTAO-North at the Observatorio del Roque de Los Muchachos (ORM), La Palma, Canary Islands, Spain, and in the southern hemisphere, CTAO-South at a site belonging to the European Southern Observatory (ESO), Cerro Paranal, Chile. IACTs indirectly detect high-energy cosmic photons in an energy range from tens of GeV to several hundreds of TeV by measuring Cherenkov light emitted by atmospheric showers of secondary particles, produced through interactions between incident photons and nuclei of atmospheric gasses in the upper layers. The size of the CTAO will improve the detection sensitivity in the designed energy range by about an order of magnitude with respect to present experiments and aim at improved energy and angular resolution, as well as greatly reduced systematic uncertainties. The key to achieving improvements in accuracy on the absolute energy and flux scales is the precise monitoring of the atmospheric properties for the Cherenkov light, which can be obtained with a specifically designed LIDAR. The Barcelona Raman LIDAR (BRL) prototype is the official CTAO-North Pathfinder and was deployed at ORM for extensive tests between February 2021 and May 2022. We report the BRL’s prospects for the CTAO-North, emphasizing the technical implementation and the preliminary data taken during its deployment period. Ključne besede: Cherenkov Telescope Array Observatory, CTAO, LIDAR, Barcelona Raman LIDAR Objavljeno v RUNG: 05.05.2025; Ogledov: 350; Prenosov: 0
Celotno besedilo (1,02 MB) Gradivo ima več datotek! Več... |
3. Update on full-sky searches for large- and medium-scale anisotropies in the UHECR flux using the Pierre Auger Observatory and the Telescope ArrayGrigory I. Rubtsov, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci Opis: The flux of ultra-high-energy cosmic rays (UHECRs) is remarkably uniform across all directions in the sky. The only anisotropy detected with a significance greater than 5σ is a large-scale dipolar modulation in right ascension for energies above 8 EeV. To enhance our sensitivity to potential anisotropies, which may be obscured by significant deflections by magnetic fields, two strategies can be employed: (1) focusing on large-scale anisotropies, such as the dipole and quadrupole moments across various energy intervals, which are anticipated to be more resilient to magnetic deflections; or (2) focusing on the highest energies, where the background from distant sources is more attenuated. The unique aspect of our research is achieving full-sky coverage by combining data for the Pierre Auger Observatory and the Telescope Array, which would not be possible with a single detector array. This comprehensive coverage enables the application of analysis techniques that would otherwise require specific assumptions with partial sky coverage. Accounting for potential systematic effects in energy reconstruction is crucial to avoid spurious north–south anisotropies; the overlapping sky region observed by both arrays allows us to address this in an entirely data-driven manner. In this contribution, we present the latest results using the largest UHECR dataset collected to date, with events detected until December 2022 at the Pierre Auger Observatory and until May 2024 at the Telescope Array. It is shown that the dipolar modulation is the only anisotropy that is significantly (4.6σ) identified in the angular power spectrum. The hypothesis of correlations with the starburst galaxies is supported at the significance of 4.4σ. Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, UHECR arrival directions, UHECR large-scale anisotropies, UHECR medium-scale anisotropies, full-sky coverage, Telescope Array Objavljeno v RUNG: 05.05.2025; Ogledov: 341; Prenosov: 4
Celotno besedilo (2,00 MB) Gradivo ima več datotek! Več... |
4. An extremely energetic cosmic ray observed by a surface detector arrayR. U. Abbasi, M. Allen, R. Arimura, J. W. Belz, Douglas R. Bergman, S. A. Blake, K. Shin, I. J. Buckland, B. G. Cheon, Jon Paul Lundquist, 2023, izvirni znanstveni članek Opis: Cosmic rays are energetic charged particles from extraterrestrial sources, with the highest-energy events thought to come from extragalactic sources. Their arrival is infrequent, so detection requires instruments with large collecting areas. In this work, we report the detection of an extremely energetic particle recorded by the surface detector array of the Telescope Array experiment. We calculate the particle’s energy as 244 +- 29 (stat.) +51,-76 (syst.)
exa–electron volts (~40 joules). Its arrival direction points back to a void in the large-scale structure of the Universe. Possible explanations include a large deflection by the foreground magnetic field, an unidentified source in the local extragalactic neighborhood, or an incomplete knowledge of particle physics. Ključne besede: ultra-high-energy cosmic rays, telescope array, extremely energetic cosmic-ray event Objavljeno v RUNG: 23.04.2025; Ogledov: 274; Prenosov: 2
Povezava na datoteko Gradivo ima več datotek! Več... |
5. Mass composition of ultrahigh energy cosmic rays from distribution of their arrival directions with the Telescope ArrayR. U. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Y. Arai, R. Arimura, E. Barcikowski, J. W. Belz, Douglas R. Bergman, Jon Paul Lundquist, 2024, izvirni znanstveni članek Opis: We use a new method to estimate the injected mass composition of ultrahigh cosmic rays (UHECRs) at energies higher than 10 EeV. The method is based on comparison of the energy-dependent distribution of cosmic ray arrival directions as measured by the Telescope Array (TA) experiment with that calculated in a given putative model of UHECR under the assumption that sources trace the large-scale structure (LSS) of the Universe. As we report in the companion Letter, the TA data show large deflections with respect to the LSS which can be explained, assuming small extragalactic magnetic fields (EGMF), by an intermediate composition changing to a heavy one (iron) in the highest energy bin. Here we show that these results are robust to uncertainties in UHECR injection spectra, the energy scale of the experiment and galactic magnetic fields. The assumption of weak EGMF, however, strongly affects this interpretation at all but the highest energies E > 100 EeV, where the remarkable isotropy of the data implies a heavy injected composition even in the case of strong EGMF. This result also holds if UHECR sources are as rare as 2 × 10[sup]−5 Mpc[sup]−3, that is the conservative lower limit for the source number density. Ključne besede: ultrahigh energy cosmic rays, large-scale structure, extragalactic magnetic fields, UHECR propagation, Telescope Array, UHECR mass composition, UHECR arrival directions Objavljeno v RUNG: 23.04.2025; Ogledov: 282; Prenosov: 2
Povezava na datoteko Gradivo ima več datotek! Več... |
6. Isotropy of Cosmic Rays beyond 10[sup]20 eV Favors Their Heavy Mass CompositionR. U. Abbasi, Jon Paul Lundquist, 2024, izvirni znanstveni članek Opis: We report an estimation of the injected mass composition of ultrahigh energy cosmic rays (UHECRs) at energies higher than 10 EeV. The composition is inferred from an energy-dependent sky distribution of UHECR events observed by the Telescope Array surface detector by comparing it to the Large Scale Structure of the local Universe. In the case of negligible extragalactic magnetic fields (EGMFs), the results are consistent with a relatively heavy injected composition at E ∼ 10 EeV that becomes lighter up to E ∼ 100 EeV, while the composition at E > 100 EeV is very heavy. The latter is true even in the presence of highest experimentally allowed extragalactic magnetic fields, while the composition at lower energies can be light if a strong EGMF is present. The effect of the uncertainty in the galactic magnetic field on these results is subdominant. Ključne besede: ultrahigh energy cosmic rays (UHECRs), Large Scale Structure, extragalactic magnetic fields, UHECR propagation, Telescope Array surface detector, UHECR mass composition, UHECR arrival directions Objavljeno v RUNG: 23.04.2025; Ogledov: 284; Prenosov: 2
Povezava na datoteko Gradivo ima več datotek! Več... |
7. Intermediate fluence downward terrestrial gamma ray flashes as observed by the Telescope Array Surface DetectorR. U. Abbasi, N. Kieu, P. R. Krehbiel, J. W. Belz, M. M. F. Saba, W. Rison, M. A. Stanley, D. Rodeheffer, D. Mazzucco, Jon Paul Lundquist, 2024, izvirni znanstveni članek Opis: On 11 September 2021, two small thunderstorms developed over the Telescope Array Surface Detector (TASD) that produced an unprecedented number of six downward terrestrial gamma ray flashes (TGFs) within one‐hour timeframe. The TGFs occurred during the initial stage of negative cloud‐to‐ground flashes whose return strokes had increasingly large peak currents up to 223 kA, 147 GeV energy deposit in up to 25 1.2 km‐spaced surface detectors, and intermittent bursts of gamma‐rays with total durations up to 717 s. The analyses are based on observations recorded by the TASD network, complemented by data from a 3D lightning mapping array, broadband VHF interferometer, fast electric field change sensor, high‐speed video camera, and the National Lightning Detection Network. The TGFs of the final two flashes had gamma fluences of and 8, logarithmically bridging the gap between previous TASD and satellite‐based detections. The observations further emphasize the similarity between upward and downward TGF varieties, suggesting a common mechanism for their production. Ključne besede: Telescope Array Surface Detector, terrestrial gamma ray flashes, 3D lightning mapping array, broadband VHF interferometer, fast electric field change sensor, high‐speed video camera, National Lightning Detection Network, TGF fluence measurement Objavljeno v RUNG: 23.04.2025; Ogledov: 286; Prenosov: 4
Celotno besedilo (5,03 MB) Gradivo ima več datotek! Več... |
8. First time-resolved leader spectra associated with a downward terrestrial gamma-ray flash detected at the Telescope Array Surface DetectorN. Kieu, R. U. Abbasi, M. M. F. Saba, J. W. Belz, P. R. Krehbiel, M. A. Stanley, F. J. Gordillo-Vazquez, M. Passas-Varo, T. Warner, Jon Paul Lundquist, 2024, izvirni znanstveni članek Opis: Optical emissions associated with Terrestrial Gamma ray Flashes (TGFs) have recently become important subjects in space‐based and ground‐based observations as they can help us understand how TGFs are produced during thunderstorms. In this paper, we present the first time‐resolved leader spectra of the optical component associated with a downward TGF. The TGF was observed by the Telescope Array Surface Detector (TASD) simultaneously with other lightning detectors, including a Lightning Mapping Array (LMA), an INTerFerometer (INTF), a Fast Antenna (FA), and a spectroscopic system. The spectroscopic system recorded leader spectra at 29,900 frames per second (33.44 s time resolution), covering a spectral range from 400 to 900 nm, with 2.1 nm per pixel. The recordings of the leader spectra began 11.7 ms before the kA return stroke and at a height of 2.37 km above the ground. These spectra reveal that optical emissions of singly ionized nitrogen and oxygen occur between 167 s before and 267 s after the TGF detection, while optical emissions of neutrals (H I, 656 nm; N I, 744 nm, and O I, 777 nm) occur right at the moment of the detection. The time‐dependent spectra reveal differences in the optical emissions of lightning leaders with and without downward TGFs. Ključne besede: Telescope Array Surface Detector, terrestrial gamma‐ray flashes, time‐resolved tgf leader spectra Objavljeno v RUNG: 22.04.2025; Ogledov: 308; Prenosov: 2
Celotno besedilo (2,56 MB) Gradivo ima več datotek! Več... |
9. Prospects for annihilating dark matter from M31 and M33 observations with the Cherenkov Telescope ArrayMiltiadis Michailidis, Lorenzo Marafatto, Denys Malyshev, Fabio Iocco, Gabrijela Zaharijas, Olga Sergijenko, Maria Isabel Bernardos, Christopher Eckner, Alexey Boyarsky, Anastasia Sokolenko, Andrea Santangelo, 2023, izvirni znanstveni članek Opis: Abstract
M31 and M33 are the closest spiral galaxies and the largest members (together with the Milky Way) of the Local group, which makes them interesting targets for indirect dark matter searches. In this paper we present studies of the expected sensitivity of the Cherenkov Telescope Array (CTA) to an annihilation signal from weakly interacting massive particles from M31 and M33. We show that a 100 h long observation campaign will allow CTA to probe annihilation cross-sections up to 〈συ〉 ≈ 5·10-25 cm3 s-1 for the τ
+
τ
- annihilation channel (for M31, at a DM mass of 0.3 TeV), improving the current limits derived by HAWC by up to an order of magnitude.
We present an estimate of the expected CTA sensitivity, by also taking into account the contributions of the astrophysical background and other possible sources of systematic uncertainty.
We also show that CTA might be able to detect the extended emission from the bulge of M31, detected at lower energies by the Fermi/LAT. Ključne besede: dark matter, gamma rays, Cherenkov Telescope Array, i Objavljeno v RUNG: 13.01.2025; Ogledov: 664; Prenosov: 10
Povezava na datoteko Gradivo ima več datotek! Več... |
10. Multi-messenger and transient astrophysics with the Cherenkov Telescope ArrayŽ. Bošnjak, Anthony M. Brown, Alessandro Carosi, M. Chernyakova, Pierre Cristofari, F. Longo, A. López Oramas, M. Santander, Serguei Vorobiov, Danilo Zavrtanik, 2021, drugi sestavni deli Opis: The discovery of gravitational waves, high-energy neutrinos or the very-high-energy counterpart of gamma-ray bursts has revolutionized the high-energy and transient astrophysics community. The development of new instruments and analysis techniques will allow the discovery and/or follow-up of new transient sources. We describe the prospects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory, for multi-messenger and transient astrophysics in the decade ahead. CTA will explore the most extreme environments via very-high-energy observations of compact objects, stellar collapse events, mergers and cosmic-ray accelerators. Ključne besede: multi-messenger astrophysics, gravitational waves, very-high-energy (VHE) gamma rays, cosmic rays, VHE neutrinos, transient astrophysical phenomena, Cherenkov Telescope Array Observatory Objavljeno v RUNG: 13.01.2025; Ogledov: 679; Prenosov: 7
Celotno besedilo (6,21 MB) Gradivo ima več datotek! Več... |