Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


51 - 60 / 105
Na začetekNa prejšnjo stran234567891011Na naslednjo stranNa konec
51.
Analysis of SiO2 and BaSO4 leachates from dental composites by thermal lens spectrometry
Dorota Korte, Vesna Jereb, Mladen Franko, 2022, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: dental composites, thermal lens spectrometry, SiO2 and BaSO4 leachates
Objavljeno v RUNG: 30.06.2022; Ogledov: 1272; Prenosov: 0
Gradivo ima več datotek! Več...

52.
Weathering induced morphological modification on the thermal diffusivity of natural pyrrhotite : a thermal lens study
Mohanachandran Nair Sindhu Swapna, Vijayakumar Gokul, Vimal Raj, R. Manu Raj, S. N. Kumar, Sankaranarayana Iyer Sankararaman, 2021, izvirni znanstveni članek

Opis: Natural pyrrhotites have gained significant attention due to their interesting electronic, antimicrobial, and chemical properties. The present work attempts to explore the morphology-induced modifications in the thermal characteristics of natural pyrrhotite due to ageing. The morphological, elemental, structure, optical, and thermal characterisations help in understanding the effect of ageing. The effects of five years of ageing of the sample are (i) Field Emission Scanning Electron Microscopic analysis reveals a morphological transformation from flakes to agglomerated powder, (ii) elemental analyses suggest the ageing induced compositional modification (iii) the Tauc plot analysis shows a bandgap energy modification from 1.46 eV to 1.92 eV, (iv) X-ray Diffraction (XRD), Fourier Transform Infrared, and X-ray photoelectron spectroscopic studies affirm the formation of oxy-hydroxides (v) the XRD data indicates an increase of dislocation density, and (vi) Photoluminescence study shows a deep violet emission evidenced through the CIE plot. The study by the thermal lens technique shows a lowering of thermal diffusivity study by 23%, due to the morphological modifications, adsorbed/chemisorbed hydroxyl groups, and the formation of secondary compounds due to oxidation and weathering. The phonon boundary scattering, weathering induced smaller grain size, reduced phonon mean free path, and point defects also account for the lowering of the thermal diffusivity value and thereby influencing its properties.
Ključne besede: pyrrhotite, thermal diffusivity, thermal lens, ageing, morphology
Objavljeno v RUNG: 30.06.2022; Ogledov: 1185; Prenosov: 6
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

53.
Downscaling of sample entropy of nanofluids by carbon allotropes : a thermal lens study
Mohanachandran Nair Sindhu Swapna, Vimal Raj, S. Sreejyothi, K. Satheesh Kumar, Sankaranarayana Iyer Sankararaman, 2020, izvirni znanstveni članek

Opis: The work reported in this paper is the first attempt to delineate the molecular or particle dynamics from the thermal lens signal of carbon allotropic nanofluids (CANs), employing time series and fractal analyses. The nanofluids of multi-walled carbon nanotubes and graphene are prepared in base fluid, coconut oil, at low volume fraction and are subjected to thermal lens study. We have studied the thermal diffusivity and refractive index variations of the medium by analyzing the thermal lens (TL) signal. By segmenting the TL signal, the complex dynamics involved during its evolution is investigated through the phase portrait, fractal dimension, Hurst exponent, and sample entropy using time series and fractal analyses. The study also explains how the increase of the photothermal energy turns a system into stochastic and anti-persistent. The sample entropy (S) and refractive index analyses of the TL signal by segmenting into five regions reveal the evolution of S with the increase of enthalpy. The lowering of S in CAN along with its thermal diffusivity (50%–57% below) as a result of heat-trapping suggests the technique of downscaling sample entropy of the base fluid using carbon allotropes and thereby opening a novel method of improving the efficiency of thermal systems.
Ključne besede: carbon allotropic nanofluids, time series, entropy, MWCNT, thermal lens signal
Objavljeno v RUNG: 30.06.2022; Ogledov: 1300; Prenosov: 0
Gradivo ima več datotek! Več...

54.
Soot effected sample entropy minimization in nanofluid for thermal system design : a thermal lens study
Mohanachandran Nair Sindhu Swapna, Vimal Raj, K. Satheesh Kumar, Sankaranarayana Iyer Sankararaman, 2020, izvirni znanstveni članek

Opis: The present work suggests a method of improving the thermal system efficiency, through entropy minimisation, and unveils the mechanism involved by analysing the molecular/particle dynamics in soot nanofluids (SNFs) using the time series, power spectrum, and wavelet analyses of the thermal lens signal (TLS). The photothermal energy deposition in the SNF lowers the refractive index due to the temperature rise. It triggers the particle dynamics that are investigated by segmenting the TLS and analysing the refractive index, phase portrait, fractal dimension (D), Hurst exponent (H), and sample entropy (SampEn). The wavelet analysis gives information about the relation between the entropy and the frequency components. When the phase portrait analysis reflects the complex dynamics from region 1 to 2 for all the samples, the SampEn analysis supports it. The decreasing value of D (from 1.59 of the base fluid to 1.55 and 1.52) and the SampEn (from 1.11 of the base fluid to 0.385 and 0.699) with the incorporation of diesel and camphor soot, indicate its ability to lower the complexity, randomness, and entropy. The increase of SampEn with photothermal energy deposition suggests its relation to the thermodynamic entropy (S). The lowering of thermal diffusivity value of the base fluid from 1.4 × 10−7 m2/s to 1.1 × 10−7 and 0.5 × 10−7 m2 /s upon diesel and camphor soot incorporation suggests the heat-trapping and reduced molecular dynamics in heat dissipation.
Ključne besede: soot, entropy, thermal system, photothermal, time series, nanofluid, fractal
Objavljeno v RUNG: 30.06.2022; Ogledov: 1201; Prenosov: 0
Gradivo ima več datotek! Več...

55.
Thermal Lensing of Multi-Walled Carbon Nanotube Solutions as Heat-Transfer Nanofluids
Mohanachandran Nair Sindhu Swapna, RAJ VIMAL, CABRERA HUMBERTO, SANKARARAMAN SANKARANARAYANA IYER, 2021, izvirni znanstveni članek

Opis: This paper unwraps nanofluids’ particle dynamics with multi-walled carbon nanotubes (MWCNTs) in base fluids such as acetone, water, and ethylene glycol. Having confirmed the morphology and structure of the MWCNTs by field emission scanning electron microscopy, X-ray diffraction, and Raman spectroscopic analyses, the nanofluids are prepared in three different concentrations. The nonzero absorbance at the laser wavelength, revealed through the UV−visible spectrum, makes the thermal diffusivity study of the sample by the sensitive nondestructive single beam thermal lens (TL) technique possible. The TL signal analysis by time series and fractal techniques divulges the complex particle dynamics, through phase portrait, sample entropy, fractal dimension, and Hurst exponent. The study unveils the effect of the amount of nanoparticles and the viscosity of the medium on thermal diffusivity and particle dynamics. The observed inverse relation between thermal diffusivity and viscosity is in good agreement with the Sankar−Swapna model. The complexity of particle dynamics in MWCNT nanofluids reflected through sample entropy, and fractal dimension shows an inverse relation to the base fluid’s viscosity. This paper investigates the role of viscosity of the base fluid on particle dynamics and thermal diffusivity of the nanofluid to explore its applicability in various thermal systems, thereby suggesting a method to tune the sample entropy through proper selection of base fluid.
Ključne besede: MWCNT, thermal lens, fractals, nonlinear time series, phase portrait, sample entropy
Objavljeno v RUNG: 28.06.2022; Ogledov: 1431; Prenosov: 0
Gradivo ima več datotek! Več...

56.
Topological insulator nanoparticles : material with prospect for photo-thermal applications
Blaž Belec, Nina Kostevšek, Giulia Della Pelle, Sandra Gardonio, Mattia Fanetti, Matija Valant, 2022, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: topological insulators, nanomaterials, photo-thermal
Objavljeno v RUNG: 27.06.2022; Ogledov: 1225; Prenosov: 6
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

57.
58.
Novel analytical approaches in quality and safety control in production of fermented beverages : dissertation
Jelena Topić, 2022, doktorska disertacija

Opis: The exploitation of microorganisms for fermentation goes back centuries. Two types of fermentation are usually used in the winemaking process – alcoholic fermentation and malolactic fermentation. Nowadays, inoculated fermentations with the use of starter cultures are commonly used in order to produce wine with more consistent quality. However, wines can lack in flavour complexity, so scientists and the industry are constantly looking for new and improved starters that can be adapted to different types of wine. In this work we focused on the development and implementation of novel analytical methods for wine quality control. In the course of method development native yeasts and lactic acid bacteria isolates were characterized for wine starter properties. We focused on the determination of biologically active compounds that determine wine quality and safety. Yeasts can influence wine colour through their adsorption capacity and synthesis of stable colour pigments pyranoanthocyanins and lactic acid bacteria can produce biogenic amines which can have adverse detrimental health effects on sensitive consumers when they are present in wines.
Ključne besede: Saccharomyces yeasts, non-Saccharomyces yeasts, pyranoanthocyanins, thermal-lens spectrometry, lactic acid bacteria, biogenic amines, thin layer chromatography, dissertations
Objavljeno v RUNG: 18.02.2022; Ogledov: 2687; Prenosov: 120
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

59.
Through-plane and in-plane thermal diffusivity determination of graphene nanoplatelets by photothermal beam deflection spectrometry
Humberto Cabrera, Dorota Korte, Hanna Budasheva, Behnaz Abbasgholi N. Asbaghi, Stefano Bellucci, 2021, izvirni znanstveni članek

Opis: In this work, in-plane and through-plane thermal diffusivities and conductivities of a freestanding sheet of graphene nanoplatelets are determined using photothermal beam deflection spectrometry. Two experimental methods were employed in order to observe the effect of load pressures on the thermal diffusivity and conductivity of the materials. The in-plane thermal diffusivity was determined by the use of a slope method supported by a new theoretical model, whereas the through-plane thermal diffusivity was determined by a frequency scan method in which the obtained data were processed with a specifically developed least-squares data processing algorithm. On the basis of the determined values, the in-plane and through-plane thermal conductivities and their dependences on the values of thermal diffusivity were found. The results show a significant difference in the character of thermal parameter dependence between the two methods. In the case of the in-plane configuration of the experimental setup, the thermal conductivity decreases with the increase in thermal diffusivity, whereas with the through-plane variant, the thermal conductivity increases with an increase in thermal diffusivity for the whole range of the loading pressure used. This behavior is due to the dependence of heat propagation on changes introduced in the graphene nano-platelets structure by compression.
Ključne besede: graphene nanoplatelets, thermal diffusivity, thermal conductivity, photothermal spectrometry
Objavljeno v RUNG: 30.11.2021; Ogledov: 1854; Prenosov: 66
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

60.
Chemical (in)stability of interfaces between different metals and Bi[sub]2Se[sub]3 topological insulator
Katja Ferfolja, Mattia Fanetti, Sandra Gardonio, Matjaž Valant, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: In recent years a classification of materials based on their topological order gained popularity due to the discovery of materials with special topological character – topological insulators (TI). TI have different band structure than regular insulators or conductors. They are characterized by a band gap in the bulk of the material, but at the surface they possess conductive topological surface states (TSS) that cross the Fermi level. TSS are a consequence of the non-trivial bulk band structure and have properties that differ from ordinary surface states. They are robust toward contamination and deformation of the surface. Additionally, they are also spin polarized, which means that an electron spin is locked to a crystal momentum and, therefore, backscattering during transport is suppressed [1]. Due to their specific properties the TI could be used in fields of spintronics, quantum computing and catalysis [2]. The investigation of the interfaces between metals and the TI has not been given much attention even though its characterization is interesting from fundamental physics and applicative point of view. (In)stability of the contacts with metal electrodes, in a form of a chemical reaction or diffusion, has to be taken into account since it can affect the transport properties of the material or increase the contact resistance. Our research is dedicated to the study of the metal/TI interfaces, in particular to Bi2Se3 with deposited metals that are relevant for electrical contacts (Au, Ag, Pt, Cr, Ti). The thermal and chemical stability of the interfaces are of fundamental importance for understanding the contact behavior, therefore, we focused our work to the characterization of these properties. The metal/TI interfaces are investigated mainly with an electron microscopy (SEM, TEM, STM), EDX microanalysis and XRD. Our previous studies showed that the interface between Bi2Se3, and Ag deposited either chemically or from a vapor phase, results in the formation of new phases already at room temperature [3]. On the contrary, Au deposited on the Bi2Se3 surface shows very limited reactivity and is stable at RT, but diffusion and coalescence of the metal are observed starting from 100 °C [4]. In this contribution, we will present further characterization on the evolution of the Ag/Bi2Se3 and Au/Bi2Se3 interfaces, show preliminary results about recently investigated systems (Pt/Bi2Se3, Ti/Bi2Se3) and compare the thermal and chemical stability of the systems under investigation.
Ključne besede: thermal lens spectrometry, photothermal beam deflection spectroscopy, dye remediation, photothermal technique, photocatalytic degradation, reactive blue 19, TiO2 modification
Objavljeno v RUNG: 20.08.2021; Ogledov: 2291; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh