1. Influence of the dipole moment on the increase in the thermal conductivity of thin films functionalized with azo dyeAmeneh Mikaeeli, Dorota Korte, Tomasz Rerek, Dariusz Chomicki, Bayram Gündüz, Beata Derkowska-Zielińska, Andreas D. Wieck, Oksana Krupka, Michal Pawlak, 2024, izvirni znanstveni članek Ključne besede: thermal conductivity, thin films, azo dye functionalization, thermal conductivityv Objavljeno v RUNG: 23.09.2024; Ogledov: 464; Prenosov: 2 Celotno besedilo (4,40 MB) Gradivo ima več datotek! Več... |
2. Disinfection of wastewater using porous Fe2O3 thin film : master's thesisRanin M. D. Ismail, 2024, magistrsko delo Opis: The contamination of water bodies by microorganisms is seen as a highly significant issue that poses a threat to human and animal well-being. The primary objective of this master thesis is to develop and evaluate an environmentally friendly photoelectrochemical (PEC) method using porous Fe₂O₃ thin films for the disinfection of wastewater. This thesis presents the novel application of porous Fe₂O₃ thin films, which were produced using a cost-effective spin-coating technique, to improve the process of PEC disinfection. The PEC approach has been demonstrated to be highly effective in disinfection of wastewaters deliberately contaminated with E. coli bacteria. The crystallinity of the Fe₂O₃ porous thin films was confirmed using X-ray diffraction (XRD), while the film morphology was studied using scanning electron microscopy (SEM). The PEC disinfection procedures were conducted in the presence of two separate electrolytes, sodium sulfite (Na₂SO₃) and sodium chloride (NaCl), which were chosen for their specific roles in improving the effectiveness of disinfection. The PEC method shown efficacy in inactivating E. coli, with 45% of the bacteria being inactivated in the presence of 2 mM Na₂SO₃ and complete inactivation achieved with 20 mM NaCl. The findings suggest that the PEC disinfection process is a highly efficient and eco-friendly technology that can be used as a practical substitute for traditional disinfection methods. As a result, it has potential applications in ensuring public safety and safeguarding the environment, particularly in relation to wastewater treatment. Ključne besede: Treated wastewater, Disinfection, Escherichia coli, Photoelectrochemical oxidation, Fe2O3 thin films, Sodium sulfite and Sodium chloride. Objavljeno v RUNG: 09.09.2024; Ogledov: 795; Prenosov: 13 Celotno besedilo (2,23 MB) |
3. |
4. Where is iron? : depth binding profiles in Chelex resin hydrogels using diffusive gradients in thin films - beam deflection spectrometry methodDorota Korte, Hanna Budasheva, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman, Arne Bratkič, 2023, objavljeni povzetek znanstvenega prispevka na konferenci Ključne besede: iron, Chelex resin, diffusive gradients, thin films, beam deflection spectrometry Objavljeno v RUNG: 09.01.2024; Ogledov: 1406; Prenosov: 3 Povezava na datoteko Gradivo ima več datotek! Več... |
5. Measuring thermal diffusivity of azoheteroarene thin layers by photothermal beam deflection and photothermal lens methodsAmeneh Mikaeeli, Dorota Korte, Humberto Cabrera, Dariusz Chomicki, Dariusz Dziczek, Oksana Kharchenko, Peng Song, Junyan Liu, Andreas D. Wieck, Michal Pawlak, 2023, izvirni znanstveni članek Ključne besede: thin films, photothermal spectroscopy, thermal transport, thermal wave, thermal conductivity, thermal diffusivity Objavljeno v RUNG: 21.09.2023; Ogledov: 2170; Prenosov: 6 Celotno besedilo (882,88 KB) Gradivo ima več datotek! Več... |
6. |
7. Iron phosphide thin films for electrocatalytic H2 generation and water remediation studies : abstractTakwa Chouki, Manel Machreki, Jelena Topic, Lorena Butinar, Plamen Stefanov, Erika Jež, Jack S Summers, Matjaž Valant, Aaron Fait, Saim Emin, 2022, objavljeni povzetek znanstvenega prispevka na konferenci Ključne besede: Iron phosphide thin films
H2 generation
water remediation Objavljeno v RUNG: 10.02.2023; Ogledov: 1821; Prenosov: 0 Gradivo ima več datotek! Več... |
8. Salicylaldehydate coordinated two-dimensional-conjugated metal-organic frameworksAbdul Khayum Mohammed, Pilar Pena-Sánchez, Ajmal Pandikassala, Safa Gaber, Ayesha Alkhoori, Tina Škorjanc, Kyriaki Polychronopoulou, Sreekumar Kurungot, Felipe Gándara, Dinesh Shetty, 2023, izvirni znanstveni članek Ključne besede: metal-organic framework, 2D materials, salicylaldehyde, thin films, mechanochemistry Objavljeno v RUNG: 10.02.2023; Ogledov: 1998; Prenosov: 3 Povezava na datoteko Gradivo ima več datotek! Več... |
9. Growth of MoSe2 thin films and use in electrochemical hydrogen evolution : abstractTakwa Chouki, Borjana Donkova, Burhan can Aktarla, Plamen Stefanov, Saim Emin, 2020, objavljeni povzetek znanstvenega prispevka na konferenci Opis: We present the chemical vapor deposition (CVD) approach to grow MoSe2 thin films using colloidal molybdenum nanoparticles (Mo NPs). The synthetic protocol of Mo NPs was achieved using a wet-chemical method. The obtained Mo NPs were spin-coated on graphite substrates and heat-treated in the presence of selenium vapors at several temperatures (≥750 °C). The electrocatalytic activities of heat-treated MoSe2 thin
films were studied for hydrogen evolution reaction (HER) in 0.5 M sulfuric acid (H2SO4). The lowest recorded
overpotential of 218 mV at 10 mA cm−2 vs. a reversible hydrogen electrode was achieved with MoSe2−800°C catalyst. In addition, electrochemical impedance spectroscopy (EIS) was performed to access the charge-transfer resistance of the MoSe2 films. The colloidal approach combined with CVD is a promising route to produce carbon supported MoSe2 electrocatalyst for HER. Ključne besede: MoSe2 thin films
CVD
HER Objavljeno v RUNG: 06.02.2023; Ogledov: 2179; Prenosov: 0 Gradivo ima več datotek! Več... |
10. NONDESTRUCTIVE THERMAL, OPTICAL, CHEMICAL AND STRUCTURAL CHARACTERIZATION OF ADVANCED MATERIALS BY OPTOTHERMAL TECHNIQUESHanna Budasheva, doktorska disertacija Opis: Advanced materials are promising ones in application in fields where it is necessary to decrease energy consumption and ensure better performance at a lower cost. They are materials, which have enhanced properties compared to conventional materials in the field of their applications.1 The huge group of them contributes significantly to every aspect of our lives. Among them, chosen for the present study, are resins for passive sampling of iron species in natural water and sediments, anticorrosive coatings, and multilayered polysaccharide aerogels for medical applications.
The composition and structure of each material determine its chemical, mechanical and physical properties, consequently their performance.2 The ability to use advanced materials in areas where their impact will be significant is largely dependent on the ability to precisely determine their characteristics to identify their properties that are either unique or has a better value. Therefore, the development of new methods or improvement of already known ones will make a great contribution to the development of the fields of application of the selected materials.
The present study is focused on the examination of the chosen materials by determining their optical, chemical, thermal and structural properties for applying them further in the desired applications. To provide the needed characterization, optothermal techniques such as optothermal beam deflection spectrometry (BDS) and thermal lens spectrometry (TLS) are developed and applied.
This dissertation is composed of the following chapters: introduction, theoretical background, optothermal techniques, research goal, part I (gels for passive sampling of iron species in natural water and sediments), part II (anticorrosive coatings), part II (polysaccharide aerogels), references. The core of this dissertation is presented in chapters 5 to 7. Each of the chapters separately covers the information about a selected group of advanced materials, including the sections describing sample preparation, developing the required characterization method, results, and conclusion. The connection link of these chapters is the study of the diffusion process of iron into different types of binding gels in passive samplers; external composites through the anticorrosive layers; drugs into the surrounding during the drug delivery process.
In Part I, the BDS method for the study was chosen, it was optimized, and a detailed protocol was developed for the determination of iron in passive sampler gels. The iron residues in the initial solutions were checked by a suitably tuned TLS method. The developed technique was applied to get the iron species distribution in the gel samples deposited in the sediments in the Vrtojbica River. The method was applied to the gels applied on ice from Antarctica in order to obtain the iron species distribution on its surface as well. The obtained results were validated using the TLS, UV-Vis and ICP-MS methods. The chapter contains the analysis of the Fe diffusion depth into the resin sampler, which is presented for the first time. The information is obtained by using the mathematical model and applying it to the obtained practical results by frequency scanning of the gels. The crucial information about the thermal properties of their layers containing Fe-ions from the fitting procedure was extracted. On the basis of these results, information about the diffusion depth of Fe inside the gels was obtained, which has not been previously described in the literature.
In Part II, the porosity in the anticorrosion coatings on the basis of their thermal parameters was determined. For the first time, the opened porosity was extracted from the total one. The analysis of Si/Zr-based hybrid sol-gel coatings has shown that the addition of cerium salts into the sol-gel matrix produces changes in its physical, chemical and corrosion properties. And it was found that the sample with the biggest amount of incorporated zirconium and loaded with cerium has the lowest values of porosity and, hence, the best barrier properties of the coating. The obtained thermal parameters of the Si/Zr-based hybrid sol-gel coatings by BDS were validated by the use of the photothermal radiometry method. On the other hand, the analysis of siloxane methacrylate coating has shown that the sol-gel hybrid methodology offers an important route for modification of thermal properties by a combination of inorganic to organic contents where the former than as an integral part of the coating network affects the thermal properties without the need for introducing fillers or nanoparticles.
In Part III, the multilayered structure of the samples, containing hyaluronic acid, amoxicillin and fucoidan layers deposited on stainless support has been analyzed by the use of the BDS technique. The thermal parameters of each layer were determined, as well as their thickness. The results revealed the diffusion between neighboring layers and followed changes in the properties of the whole sample, which is reflected in its thermal properties. Such data for multilayered materials, which potentially can be used for drug delivery systems, are presented for the first time.
Presented results indicated the ability of the BDS system for the chemical characterisation of the solid materials, the detection of their thermal parameters; investigation of total, opened and closed porosity; determining the thickness of layers in multilayered structures. The TLS method served as the validating one for the purpose of getting comprehensive information in liquid samples about their chemical composition. In summary, this dissertation explores alternative ways to apply optothermal methods to various areas of advanced materials to characterize them in order to improve their initial properties. Ključne besede: optothermal beam deflection spectrometry, thermal lens spectrometry, diffusive gradients in thin films, iron species, anticorrosive layers, porosity, polysaccharide aerogels, multilayered structures Objavljeno v RUNG: 29.08.2022; Ogledov: 3642; Prenosov: 65 Celotno besedilo (5,46 MB) |