Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 8 / 8
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Mass composition of ultrahigh energy cosmic rays from distribution of their arrival directions with the Telescope Array
R. U. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Y. Arai, R. Arimura, E. Barcikowski, J. W. Belz, Douglas R. Bergman, Jon Paul Lundquist, 2024, izvirni znanstveni članek

Opis: We use a new method to estimate the injected mass composition of ultrahigh cosmic rays (UHECRs) at energies higher than 10 EeV. The method is based on comparison of the energy-dependent distribution of cosmic ray arrival directions as measured by the Telescope Array (TA) experiment with that calculated in a given putative model of UHECR under the assumption that sources trace the large-scale structure (LSS) of the Universe. As we report in the companion Letter, the TA data show large deflections with respect to the LSS which can be explained, assuming small extragalactic magnetic fields (EGMF), by an intermediate composition changing to a heavy one (iron) in the highest energy bin. Here we show that these results are robust to uncertainties in UHECR injection spectra, the energy scale of the experiment and galactic magnetic fields. The assumption of weak EGMF, however, strongly affects this interpretation at all but the highest energies E > 100 EeV, where the remarkable isotropy of the data implies a heavy injected composition even in the case of strong EGMF. This result also holds if UHECR sources are as rare as 2 × 10[sup]−5 Mpc[sup]−3, that is the conservative lower limit for the source number density.
Ključne besede: ultrahigh energy cosmic rays, large-scale structure, extragalactic magnetic fields, UHECR propagation, Telescope Array, UHECR mass composition, UHECR arrival directions
Objavljeno v RUNG: 23.04.2025; Ogledov: 52; Prenosov: 0
URL Povezava na datoteko
Gradivo ima več datotek! Več...

2.
Isotropy of Cosmic Rays beyond 10[sup]20 eV Favors Their Heavy Mass Composition
R. U. Abbasi, Jon Paul Lundquist, 2024, izvirni znanstveni članek

Opis: We report an estimation of the injected mass composition of ultrahigh energy cosmic rays (UHECRs) at energies higher than 10 EeV. The composition is inferred from an energy-dependent sky distribution of UHECR events observed by the Telescope Array surface detector by comparing it to the Large Scale Structure of the local Universe. In the case of negligible extragalactic magnetic fields (EGMFs), the results are consistent with a relatively heavy injected composition at E ∼ 10 EeV that becomes lighter up to E ∼ 100 EeV, while the composition at E > 100 EeV is very heavy. The latter is true even in the presence of highest experimentally allowed extragalactic magnetic fields, while the composition at lower energies can be light if a strong EGMF is present. The effect of the uncertainty in the galactic magnetic field on these results is subdominant.
Ključne besede: ultrahigh energy cosmic rays (UHECRs), Large Scale Structure, extragalactic magnetic fields, UHECR propagation, Telescope Array surface detector, UHECR mass composition, UHECR arrival directions
Objavljeno v RUNG: 23.04.2025; Ogledov: 60; Prenosov: 0
URL Povezava na datoteko
Gradivo ima več datotek! Več...

3.
Testing the declination dependency of the spectrum measured by the Pierre Auger Observatory
Diego Ravignani, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci

Opis: The distribution of the arrival directions of cosmic rays observed by the Pierre Auger Observatory has a dipolar component that implies a flux dependence on declination. Previously, we showed that the spectrum built from events arriving with a zenith angle less than 60° is qualitatively consistent with the dipole. In this work, we go one step further and show that the Auger spectrum cannot reject the hypothesis of a declination-independent flux. By using events of up 80°, we extend the previous survey from +25° of declination to +45°, thus covering 85% of the sky.
Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, UHECR arrival directions, large-scale dipolar anisotropy
Objavljeno v RUNG: 28.03.2025; Ogledov: 331; Prenosov: 6
.pdf Celotno besedilo (364,62 KB)
Gradivo ima več datotek! Več...

4.
5.
6.
7.
8.
Iskanje izvedeno v 0.04 sek.
Na vrh