Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


11 - 20 / 152
Na začetekNa prejšnjo stran12345678910Na naslednjo stranNa konec
11.
The calibration of the first Large-Sized Telescope of the Cherenkov Telescope Array
S. Sakurai, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) represents the next generation of very high-energy gamma-ray observatory, which will provide broad coverage of gamma rays from 20 GeV to 300 TeV with unprecedented sensitivity. CTA will employ three different sizes of telescopes, and the Large-Sized Telescopes (LSTs) of 23-m diameter dish will provide the sensitivity in the lowest energies down to 20 GeV. The first LST prototype has been inaugurated in October 2018 at La Palma (Canary Islands, Spain) and has entered the commissioning phase. The camera of the LST consists of 265 PMT modules. Each module is equipped with seven high-quantum-efficiency Photomultiplier Tubes (PMTs), a slow control board, and a readout board. Ensuring high uniformity and precise characterization of the camera is the key aspects leading to the best performance and low systematic uncertainty of the LST cameras. Therefore, prior to the installation on site, we performed a quality check of all PMT modules. Moreover, the absolute calibration of light throughput is essential to reconstruct the amount of light received by the telescope. The amount of light is affected by the atmosphere, by the telescope optical system and camera, and can be calibrated using the ring-shaped images produced by cosmic-ray muons. In this contribution, we will show the results of off-site quality control of PMT modules and on-site calibration using muon rings. We will also highlight the status of the development of Silicon Photomultiplier modules that could be considered as a replacement of PMT modules for further improvement of the camera.
Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array (CTA) Observatory, Large-Sized Telescopes (LSTs), LST-1 calibration, Photomultiplier Tubes (PMTs)
Objavljeno v RUNG: 14.11.2024; Ogledov: 736; Prenosov: 8
.pdf Celotno besedilo (3,10 MB)
Gradivo ima več datotek! Več...

12.
The Cherenkov transparency coefficient for the atmospheric monitoring and array calibration at the Cherenkov Telescope Array South
Stanislav Stefanik, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: Reconstruction of energies of very-high-energy γ–rays observed by imaging atmospheric Cherenkov telescopes is affected by changes in the atmospheric conditions and the performance of telescope components. Reliable calibration schemes aimed at these effects are necessary for the forthcoming Cherenkov Telescope Array (CTA) to achieve its goals on the maximally allowed systematic uncertainty of the global energy scale. A possible means of estimating the atmospheric attenuation of Cherenkov light is the method of the Cherenkov transparency coefficient (CTC). The CTC is calculated using the telescope detection rates, dominated by the steady cosmic ray background, while properly correcting for the hardware and observational conditions. The coefficient can also be used to relatively calibrate the optical throughput of telescopes on the assumption of homogeneous atmospheric transparency above the array. Using Monte Carlo simulations, we investigate here the potential of the CTC method for the atmospheric monitoring and telescope cross-calibration at the CTA array in the southern hemisphere. We focus on the feasibility of the method for the array of telescopes of three sizes in different observation configurations and under various levels of atmospheric attenuation.
Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array (CTA) Observatory, imaging atmospheric Cherenkov telescopes (IACTs), atmospheric monitoring, IACT calibration
Objavljeno v RUNG: 14.11.2024; Ogledov: 704; Prenosov: 5
.pdf Celotno besedilo (1,90 MB)
Gradivo ima več datotek! Več...

13.
Using muon rings for the optical throughput calibration of the Cherenkov Telescope Array
Markus Gaug, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: Muon ring images observed with Imaging Atmospheric Cherenkov Telescopes (IACTs) provide a powerful means to calibrate the optical throughput of IACTs and monitor their optical point spread function. We investigate whether muons ring images can be used as the primary optical throughput calibration method for the telescopes of the future Cherenkov Telescope Array (CTA) and find several additional systematic effects in comparison to previous works. To ensure that the method achieves the accuracy required by CTA, these systematic effects need to be taken into account and minor modifications to the hardware and analysis are necessary. We derive analytic estimates for the expected muon data rates to be used for optical throughput calibration, monitoring of the optical point spread function, with achievable statistical and systematic uncertainties, and explore the potential of muon ring images as a secondary method of camera pixel flat-fielding.
Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array (CTA) Observatory, Imaging Atmospheric Cherenkov Telescopes, IACT optical throughput calibration, IACT camera pixel flat-fielding, IACT optical point spread function (PSF), muon ring images
Objavljeno v RUNG: 13.11.2024; Ogledov: 678; Prenosov: 8
.pdf Celotno besedilo (247,77 KB)
Gradivo ima več datotek! Več...

14.
Status and performance results from NectarCAM : a camera for CTA medium sized telescopes
Thomas Tavernier, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) will be the first ground-based observatory for gamma-ray astronomy. With more than a hundred of 4th generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) distributed in two large arrays, CTA will reach unprecedented sensitivity, angular resolution, and spectral coverage. Three classes of IACTs – 40 Medium-Sized Telescopes (MSTs), 8 Large-Sized Telescopes (LSTs) and 70 Small-Sized Telescopes (SSTs) – are required to cover the full CTA energy range (20 GeV to 300 TeV). NectarCAM is a Cherenkov camera which is designed to equip medium sized telescopes of CTA, covering the central energy range from 100 GeV to 30 TeV, with a field of view of 8 degrees. It is based on a modular design with data channels using the NECTAr chip, which is equipped with both GHz sampling Switched Capacitor Array and 12-bit Analog to Digital Converter (ADC). The camera will comprise 265 modules, each consisting of 7 photomultiplier Tubes (PMTs) and a Front-End Board performing the data capture, sending the data over the Ethernet after the trigger decision at rates up to 10 kHz. This contribution provides an overview of the status of the first NectarCAM camera currently under integration in CEA Paris-Saclay (France). Furthermore, we will discuss the calibration strategies and present performance results from the CEA Paris-Saclay test bench and from the first data taken under a real sky on the prototype of medium sized telescope (MST) structure in Adlershof (Germany).
Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array (CTA) Observatory, Imaging Atmospheric Cherenkov Telescopes, medium-sized telescopes, NectarCAM IACT camera
Objavljeno v RUNG: 13.11.2024; Ogledov: 743; Prenosov: 7
.pdf Celotno besedilo (2,27 MB)
Gradivo ima več datotek! Več...

15.
The transient program of the Cherenkov Telescope Array
Fabian Schűssler, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) is the next generation high-energy gamma-ray observatory. It will improve the sensitivity of current instruments up to an order of magnitude, while providing energy coverage for photons from 20 GeV to at least 300 TeV to reach high redshifts and extreme accelerators and will give access to the shortest time-scale phenomena. CTA is thus a uniquely powerful instrument for the exploration of the violent and variable universe. The ability to probe short timescales at the highest energies will allow CTA to explore the connection between accretion and ejection phenomena surrounding compact objects, investigate the processes occurring in relativistic outflows, and open up significant phase space for serendipitous discoveries. Aiming at playing a central role in the era of multi-messenger astrophysics, the CTA Transient program includes follow-up observations of a broad range of multi-wavelength and multi-messenger alerts, ranging from Galactic compact object binary systems to novel phenomena like Fast Radio Bursts. A promising case is that of gamma-ray bursts (GRBs), where CTA will for the first time enable high-statistics measurements above ∼ 10 GeV, probing new spectral components and shedding light on the physical processes at work in these systems. Dedicated programs searching for very-high-energy (VHE) gamma-ray counterparts to gravitational waves and high-energy neutrinos complete the CTA transients program. This contribution will introduce and outline the CTA Transients program. We will provide an overview of the various science topics and discuss the links to multi-messenger and multi-wavelength observations.
Ključne besede: very-high-energy (VHE) gamma rays, the Cherenkov Telescope Array (CTA) Observatory, transient astrophysical phenomena, relativistic outflows, gamma-ray bursts
Objavljeno v RUNG: 12.11.2024; Ogledov: 663; Prenosov: 5
.pdf Celotno besedilo (1,64 MB)
Gradivo ima več datotek! Več...

16.
Cherenkov Telescope Array potential in the search for Galactic PeVatrons
E.O. Angüner, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: One of the major scientific objectives of the future Cherenkov Telescope Array (CTA) Observatory is the search for PeVatrons. PeVatrons are cosmic-ray factories able to accelerate nuclei at least up to the knee feature seen in the spectrum of cosmic rays measured near the Earth. CTA will perform a survey of the full Galactic plane at TeV energies and beyond with unprecedented sensitivity. The determination of efficient criteria to identify PeVatron candidates during the survey is essential in order to trigger further dedicated observations. Here, we present results from a study based on simulations to determine these criteria. The outcome of the study is a PeVatron figure of merit, defined as a metric that provides relations between spectral parameters and spectral cutoff energy lower limits. In addition, simulations of the PeVatron candidate HESS J1641−463 and its parental particle spectrum are presented and discussed. Eventually, our work is applied to simulated population of Galactic PeVatrons, with the aim to determine the sensitivity of CTA.
Ključne besede: Galactic cosmic rays, very-high-energy gamma rays, Galactic PeVatrons, Cherenkov Telescope Array (CTA) Observatory, Galactic plane survey, H.E.S.S. J1641−463 PeVatron candidate
Objavljeno v RUNG: 08.11.2024; Ogledov: 628; Prenosov: 6
.pdf Celotno besedilo (677,22 KB)
Gradivo ima več datotek! Več...

17.
Testing cosmology and fundamental physics with the Cherenkov Telescope Array
H. Martínez-Huerta, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) is the next generation ground-based observatory for γ-ray astronomy at energies above 30 GeV. Thanks to its unique capabilities, CTA observations will address a plethora of open questions in astrophysics, ranging from the origin of cosmic messengers to the exploration of the frontiers of physics. In this note, we present a comprehensive sensitivity study to assess the potential of CTA to measure the γ-ray absorption on the extragalactic background light (EBL), to constrain or detect intergalactic magnetic fields (IGMFs), and probe physics beyond the standard model such as axion-like particles (ALPs) and Lorentz invariance violation (LIV), which could modify the γ-ray spectra features expected from EBL absorption. Our results suggest that CTA will have unprecedented sensitivity to detect IGMF signatures and will probe so-far unexplored regions of the LIV and ALP parameter space. Furthermore, an indirect measurement of the EBL and of its evolution will be performed with unrivaled precision.
Ključne besede: very-high-energy gamma rays, the Cherenkov Telescope Array (CTA) Observatory, extragalactic background light (EBL), intergalactic magnetic fields (IGMFs), axion-like particles (ALPs), Lorentz invariance violation (LIV)
Objavljeno v RUNG: 07.11.2024; Ogledov: 626; Prenosov: 5
.pdf Celotno besedilo (739,83 KB)
Gradivo ima več datotek! Več...

18.
Performance of the Cherenkov Telescope Array
G. Maier, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) is expected to become the by far largest and most sensitive observatory for very-high-energy gamma rays in the energy range from 20 GeV to more than 300 TeV. CTA will be capable of detecting gamma rays from extremely faint sources with unprecedented precision on energy and direction. The performance of the future observatory derived from detailed Monte Carlo simulations is presented in this contribution for the two CTA sites located on the island of La Palma (Spain) and near Paranal (Chile). This includes the evaluation of CTA sensitivity over observations pointing towards different elevations and for operations at higher night-sky background light levels.
Ključne besede: very-high-energy gamma rays, the Cherenkov Telescope Array (CTA) Observatory, detector performances
Objavljeno v RUNG: 07.11.2024; Ogledov: 600; Prenosov: 5
.pdf Celotno besedilo (452,81 KB)
Gradivo ima več datotek! Več...

19.
Prospects for a survey of the galactic plane with the Cherenkov Telescope Array
K. Abe, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, izvirni znanstveni članek

Opis: Approximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way, detected with a combination of targeted observations and surveys. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from recent observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the three main classes of established Galactic VHE sources (pulsar wind nebulae, young and interacting supernova remnants, and compact binary systems), as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy (pointing pattern and scheduling) based on recent estimations of the instrument performance. We use the improved sky model and observation strategy to simulate GPS data corresponding to a total observation time of 1620 hours spread over ten years. Data are then analysed using the methods and software tools under development for real data. Under our model assumptions and for the realisation considered, we show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, to confirm the existence of a hypothetical population of gamma-ray pulsars with an additional TeV emission component, and to detect bright sources capable of accelerating particles to PeV energies (PeVatrons). Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. Thus, a survey of the entire Galactic plane carried out from both hemispheres with CTAO will ensure a transformational advance in our knowledge of Galactic VHE source populations and interstellar emission.
Ključne besede: very-high-energy gamma rays, Cherenkov Telescope Array Observatory, CTAO Galactic Plane Survey, galactic cosmic rays, pulsar wind nebulae, supernova remnants, galactic PeVatrons, binary systems, diffuse emission
Objavljeno v RUNG: 28.10.2024; Ogledov: 802; Prenosov: 4
.pdf Celotno besedilo (4,26 MB)
Gradivo ima več datotek! Več...

20.
Prospects for ▫$\gamma-ray$▫ observations of the Perseus galaxy cluster with the Cherenkov Telescope Array
K. Abe, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, izvirni znanstveni članek

Opis: Galaxy clusters are expected to be both dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster’s formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at γ-ray energies and are predicted to be sources of large-scale γ-ray emission due to hadronic interactions in the intracluster medium (ICM). In this paper, we estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse γ-ray emission from the Perseus galaxy cluster. We first perform a detailed spatial and spectral modelling of the expected signal for both the DM and the CRp components. For each case, we compute the expected CTA sensitivity accounting for the CTA instrument response functions. The CTA observing strategy of the Perseus cluster is also discussed. In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratio X500 within the characteristic radius R500 down to about X500 < 0.003, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index αCRp = 2.3. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure αCRp down to about ∆αCRp ≃ 0.1 and the CRp spatial distribution with 10% precision, respectively. Regarding DM, CTA should improve the current ground-based γ-ray DM limits from clusters observations on the velocity- averaged annihilation cross-section by a factor of up to ∼ 5, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models with τχ > 10[sup]27 s for DM masses above 1 TeV. These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario.
Ključne besede: cosmic ray experiments, dark matter experiments, galaxy clusters, gamma ray experiments, very-high energy gamma rays, Cherenkov Telescope Array Observatory, Perseus galaxy cluster
Objavljeno v RUNG: 09.10.2024; Ogledov: 875; Prenosov: 2
.pdf Celotno besedilo (9,26 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.04 sek.
Na vrh