Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


11 - 20 / 60
Na začetekNa prejšnjo stran123456Na naslednjo stranNa konec
11.
A study of the systematic effects on the energy scale for the measurement of UHECR spectrum by the TA SD array
Keitaro Fujita, R. U. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Yasuhiko Arai, R. Arimura, E. Barcikowski, J. W. Belz, Jon Paul Lundquist, 2023, objavljeni znanstveni prispevek na konferenci

Opis: We evaluated the systematic deviation of energy scales for the energy spectrum of the highest energy cosmic rays observed by the Telescope Array Surface Detector array due to differences in atmospheric fluorescence yield and missing energy estimation. The energy dependence on the energy scales is also investigated and observationally confirmed by the constant intensity cut method analysis. The results of these studies will be presented.
Ključne besede: Telescope Array, indirect detection, surface detection, ground array, fluorescence detection, ultra-high energy, cosmic rays, energy spectrum, fluorescence yield, missing energy, systematics
Objavljeno v RUNG: 09.10.2023; Ogledov: 605; Prenosov: 4
.pdf Celotno besedilo (867,73 KB)
Gradivo ima več datotek! Več...

12.
Cosmic ray mass composition measurement with the TALE hybrid detector
K. Fujita, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: We report on the cosmic ray mass composition measured by the Telescope Array Low-energy Extension (TALE) hybrid detector. The TALE detector consists of a Fluorescence Detector (FD) station with 10 FD telescopes located at the TA Middle Drum FD Station (itself made up of 14 FD telescopes), and a Surface Detector (SD) array of scintillation counters. The SD array consists of 40 counters with 400 m spacing and 40 counters with 600 m spacing. The FD station, with a total of 24 telescopes, overlooks the SD array and provides sky coverage with an elevation angle range of 3∘ to 59∘. In this contribution, we will present the latest result of the cosmic ray mass composition measurement in the energy range from 10^16.5 eV to 10^18.5 eV using almost 5 years of TALE hybrid data.
Ključne besede: Telescope Array, TALE, low energy extension, indirect detection, hybrid detection, ground array, infill array, fluorescence detection, cerenkov light, ultra-high energy, cosmic rays, composition
Objavljeno v RUNG: 09.10.2023; Ogledov: 532; Prenosov: 6
.pdf Celotno besedilo (1,94 MB)
Gradivo ima več datotek! Več...

13.
Telescope Array Cloud Ranging Test
T. Okuda, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The Telescope Array (TA) experiment detects air-showers induced by ultra high energy cosmic rays. The TA atmospheric Fluorescence telescopic Detector(TAFD) observes cosmic ray airshower, which is incident very far from the telescope. The observation does not take place in overcast night. However, the cloud status changes quickly and sometimes there are some isolated clouds. If the cloud is behind the airshower as viewed from the TAFD, the cloud presents no problem for airshower reconstruction. However if the cloud obscures the airshower, it does create a problem for airshower reconstruction. The problematic event can be rejected by airshower profile at reconstruction. However, the estimation of exposure with isolated cloud is difficult. And it should be affected more at higher energy event with relatively further from the telescope, which is lower statistics and more important for the ultra high energy cosmic ray physics. Therefore, to test the method for evaluating the correction of exposure, we installed stereo cloud cameras near one of FD sites. I report the status of the study of the Telescope Array Cloud Ranging Test.
Ključne besede: Telescope Array, indirect detection, fluorescence detection, cerenkov light, ultra-high energy, cosmic rays, atmosphere, cloud detection, exposure, air shower reconstruction
Objavljeno v RUNG: 04.10.2023; Ogledov: 736; Prenosov: 7
.pdf Celotno besedilo (5,81 MB)
Gradivo ima več datotek! Več...

14.
FOV direction and image size calibration of Fluorescence Detector using light source on UAV
A. Nakazawa, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: In the Telescope Array (TA) experiment, we have been observing cosmic rays using a Fluorescence Detector (FD). More than 10 years have passed since we started this observation, and the accuracy of the observation has become more important than ever. We have developed the "Opt-copter" as a calibration device for the FDs. The Opt-copter is an unmanned aerial vehicle (UAV) equipped with a light source and can fly freely within the FD's field of view (FOV). In addition, the Opt-copter is equipped with a high-precision RTK-GPS, which enables it to accurately determine the position of the light source in flight. With this device, we can obtain detailed information on the optical characteristics of the FD. So far, we have reported on the configuration of the device and the analysis of the FOV direction. In this presentation, we will report on the new FOV analysis and image size analysis.
Ključne besede: Telescope Array, indirect detection, fluorescence detection, ultra-high energy, cosmic rays, light source, calibration, UAV, FOV
Objavljeno v RUNG: 04.10.2023; Ogledov: 777; Prenosov: 7
.pdf Celotno besedilo (7,14 MB)
Gradivo ima več datotek! Več...

15.
Monte Carlo simulations for the Pierre Auger Observatory using the VO auger grid resources
E. Santos, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory, located near Malargüe, Argentina, is the world’s largest cosmic-ray detector. It comprises a 3000 km^2 surface detector and 27 fluorescence telescopes, which measure the lateral and longitudinal distributions of the many millions of air-shower particles produced in the interactions initiated by a cosmic ray in the Earth’s atmosphere. The determination of the nature of cosmic rays and studies of the detector performances rely on extensive Monte Carlo simulations describing the physics processes occurring in extensive air showers and the detector responses. The aim of the Monte Carlo simulations task is to produce and provide the Auger Collaboration with reference libraries used in a wide variety of analyses. All multipurpose detector simulations are currently produced in local clusters using Slurm and HTCondor. The bulk of the shower simulations are produced on the grid, via the Virtual Organization auger, using the DIRAC middleware. The job submission is made via python scripts using the DIRAC-API. The Auger site is undergoing a major upgrade, which includes the installation of new types of detectors, demanding increased simulation resources. The novel detection of the radio component of extensive air showers is the most challenging endeavor, requiring dedicated shower simulations with very long computation times, not optimized for the grid production. For data redundancy, the simulations are stored on the Lyon server and the grid Disk Pool Manager and are accessible to the Auger members via iRODS and DIRAC, respectively. The CERN VMFile System is used for software distribution where, soon, the Auger Offline software will also be made available.
Ključne besede: Pierre Auger Observatory, indirect detection, fluorescence detection, surface detection, radio detection, ultra-high energy, cosmic rays, Monte Carlo simulation, computing resources, compute clusters, high capacity storage
Objavljeno v RUNG: 04.10.2023; Ogledov: 582; Prenosov: 7
.pdf Celotno besedilo (1,54 MB)
Gradivo ima več datotek! Več...

16.
Satellite Data for Atmospheric Monitoring at the Pierre Auger Observatory
A. Puyleart, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: Atmospheric monitoring over the 3000 km^2 of the Pierre Auger Observatory can be supplemented by satellite data. Methods for night-time cloud detection and aerosol cross-checking were created using the GOES-16 and Aeolus satellites, respectively. The geostationary GOES-16 satellite provides a 100% up-time view of the cloud cover over the observatory. GOES-13 was used until the end of 2017 for cloud monitoring, but with its retirement a method based on GOES-16 data was developed. The GOES-16 cloud detection method matches the observatory’s vertical laser cloud detection method at a rate of ∼90%. The Aeolus satellite crosses the Pierre Auger Observatory several times throughout the year firing UV-laser shots. The laser beams leave a track of scattered light in the atmosphere that can be observed by the light sensors of the observatory fluorescence telescopes. Using a parametric model of the aerosol concentration, the laser shots can be reconstructed with different combinations of the aerosol parameters. A minimization procedure then yields the parameter set that best describes the aerosol attenuation. Furthermore, the possibility of studying horizontal homogeneity of aerosols across the array is being investigated.
Ključne besede: Pierre Auger Observatory, indirect detection, fluorescence detection, ultra-high energy, cosmic rays, atmospheric monitoring, satellite monitoring, cloud detection, aerosols, UV laser shots
Objavljeno v RUNG: 04.10.2023; Ogledov: 688; Prenosov: 6
.pdf Celotno besedilo (2,92 MB)
Gradivo ima več datotek! Več...

17.
Operations of the Pierre Auger Observatory
R. Caruso, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The construction of the first stage of the Pierre Auger Observatory, designed for research of ultra-high energy cosmic rays, began in 2001 with a prototype system. The Observatory has been collecting data since early 2004 and was completed in 2008. The Observatory is situated at 1400 m above sea level near Malargüe, (Mendoza province) in western Argentina, covering a vast plain of 3000 squared km, known as the Pampa Amarillo. The Observatory consists of a hybrid detector, in which there are 1660 water-Cherenkov stations, forming the Surface Detector (SD) and 27 peripheral atmospheric fluorescence telescopes, comprising the Fluorescence Detector (FD). Over time, the Auger Observatory has been enhanced with different R&D prototypes and is recently being to an important upgrade called AugerPrime. In the present contribution, the general operations of the SD and FD will be described. In particular the FD shift procedure - executable locally in Malargüe or remotely by teams in control rooms abroad within the Collaboration - and the newly SD shifts (operating since 2019) will be explained. Additionally, the SD and FD maintenance campaigns, as well as the data taking and data handling at a basic level, will be reported
Ključne besede: Pierre Auger Observatory, AugerPrime, indirect detection, fluorescence detectors, surface detectors, ultra-high energy, cosmic rays, detector operation
Objavljeno v RUNG: 04.10.2023; Ogledov: 650; Prenosov: 4
.pdf Celotno besedilo (6,83 MB)
Gradivo ima več datotek! Več...

18.
Update of the Offline Framework for AugerPrime
L. Nellen, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: Work on the Offline Framework for the Pierre Auger Observatory was started in 2003 to create a universal framework for event reconstruction and simulation. The development and installation of the AugerPrime upgrade of the Pierre Auger Observatory require an update of the Offline Framework to handle the additional detector components and the upgraded Surface Detector Electronics. The design of the Offline Framework proved to be sufficiently flexible to accommodate the changes needed to be able to handle the AugerPrime detector. This flexibility has been a goal since the development of the code started. The framework separates data structures from processing modules. The detector components map directly onto data structures. It was straightforward to update or add processing modules to handle the additional information from the new detectors. We will discuss the general structure of the Offline Framework, explaining the design decisions that provided its flexibility and point out the few of the features of the original design that required deeper changes, which could have been avoided in hindsight. Given the disruptive nature of the AugerPrime upgrade, the developers decided that the update for AugerPrime was the moment to change also the language standard for the implementation and move to the latest version of C++, to break strict backward compatibility eliminating deprecated interfaces, and to modernize the development infrastructure. We will discuss the changes that were made to the structure in general and the modules that were added to the framework to handle the new detector components.
Ključne besede: Pierre Auger Observatory, AugerPrime, indirect detection, surface detection, ground array, fluorescence detection, ultra-high energy, cosmic rays, event reconstruction, simulation, software framework
Objavljeno v RUNG: 04.10.2023; Ogledov: 689; Prenosov: 5
.pdf Celotno besedilo (1,12 MB)
Gradivo ima več datotek! Več...

19.
The status of the TALE surface detector array and TALE infill project
A. Iwasakia, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: Routine hybrid observations of the surface detectors (SD) in conjunction with the fluorescence detectors (FD) of the Telescope Array Low-energy Extension (TALE) began in November 2018. In this presentation, we will describe the simulation studies of detector aperture and resolution of the TALE SD, and report on the latest observation results other than the energy spectrum. We are also in the process of expanding the experiment by 50 SDs, with even smaller nearest-neighbor spacing, in order lower the energy threshold to match that of the Cherenkov-dominated events seen by the FD. Details of the upgrade and expected performance of this new extension will be discussed.
Ključne besede: Telescope Array, TALE, low energy extension, indirect detection, surface detection, hybrid detection, ground array, fluorescence detection, ultra-high energy, cosmic rays
Objavljeno v RUNG: 04.10.2023; Ogledov: 606; Prenosov: 81
.pdf Celotno besedilo (1011,84 KB)
Gradivo ima več datotek! Več...

20.
Measurement of the Proton-Air Cross Section with Telescope Arrays Black Rock, Long Ridge, and Surface Array in Hybrid Mode.
R. Abbasi, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: Ultra High Energy Cosmic Ray (UHECR) detectors have been reporting on the proton-air cross section measurement beyond the capability of particle accelerators since 1984. The knowledge of this fundamental particle property is vital for our understanding of high energy particle interactions and could possibly hold the key to new physics. The data used in this work was collected over eight years using the hybrid events of Black Rock (BR) and Long Ridge (LR) fluorescence detectors as well as the Telescope Array Surface Detector (TASD). The proton-air cross section is determined at s√=73~TeV by fitting the exponential tail of the Xmax distribution of these events. The proton-air cross section is then inferred from the exponential tail fit and from the most updated high energy interaction models. σ^inel_p−air is observed to be 520.1±35.8 [Stat.] +25.3−42.9 [Sys.] mb. This is the second proton-air cross section work reported by the Telescope Array collaboration.
Ključne besede: Telescope Array, indirect detection, hybrid detection, ground array, fluorescence detection, ultra-high energy, cosmic rays, Xmax, proton-air cross-section, high energy particle interaction
Objavljeno v RUNG: 04.10.2023; Ogledov: 607; Prenosov: 4
.pdf Celotno besedilo (1,47 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh