1. Insight into the interdependence of Ni and Al in bifunctional Ni/ZSM-5 catalysts at the nanoscaleHue-Tong Vu, Iztok Arčon, Danilo Oliveira de Souza, Simone Pollastri, Goran Dražić, Janez Volavšek, Gregor Mali, Nataša Zabukovec Logar, Nataša Novak Tušar, 2022, izvirni znanstveni članek Opis: Catalyst design is crucial for improving catalytic activity and product selectivity. In a bifunctional Ni/ZSM-5
zeolite type catalyst, catalytic properties are usually tuned via varying Al and Ni contents. While changes in
acid properties associated with Al sites are usually closely investigated, Ni phases, however, receive
inadequate attention. Herein, we present a systematic structural study of Ni in the Ni/ZSM-5 materials by
using Ni K-edge XANES and EXAFS analyses, complemented by XRD and TEM, to resolve the changes in
the local environment of Ni species induced by the different Al contents of the parent ZSM-5 prepared
by a “green”, template free technique. Ni species in Ni/ZSM-5 exist as NiO crystals (3–50 nm) and as
charge compensating Ni2+ cations. The Ni K-edge XANES and EXAFS results enabled the quantification
of Ni-containing species. At a low Al to Si ratio (nAl/nSi # 0.04), the NiO nanoparticles predominate in
the samples and account for over 65% of Ni phases. However, NiO is outnumbered by Ni2+ cations
attached to the zeolite framework in ZSM-5 with a high Al to Si ratio (nAl/nSi ¼ 0.05) due to a higher
number of framework negative charges imparted by Al. The obtained results show that the number of
highly reducible and active NiO crystals is strongly correlated with the framework Al sites present in
ZSM-5 zeolites, which depend greatly on the synthesis conditions. Therefore, this kind of study is
beneficial for any further investigation of the catalytic activities of Ni/ZSM-5 and other metal-modified
bifunctional catalysts. Ključne besede: Ni/ZSM-5 catalysts, zeolite, Ni XANES, EXAFS Objavljeno v RUNG: 11.05.2022; Ogledov: 2233; Prenosov: 49 Celotno besedilo (1,25 MB) Gradivo ima več datotek! Več... |
2. Removal of copper from aqueous solutions with zeolites and possible treatment of exhaust materialsNataša Zabukovec Logar, Iztok Arčon, Janez Kovač, Margarita Popova, 2021, izvirni znanstveni članek Opis: The mechanism of Cu2+ loading into commercially available natural HEU-type and synthetic LTA-type zeolites for their
possible use in environmental processes, such as water and air treatment applications, was studied. Elemental analysis,
SEM/EDXS, XRD, XAS and XPS analyses revealed 4-fold coordination of Cu2+ cations with oxygen atoms in the pores, a
predominant location of copper atoms on the surface of crystallites and retained crystallinity of zeolites throughout the
processes. The post-treatment of Cu2+-loaded samples with HCl and/or NaCl solutions confirmed the predominantly
reversible sorption of copper on zeolites from aqueous solutions by ion-exchange mechanism and, therefore, excellent
regeneration possibilities for both types of zeolites. Furthermore, with the calcination of exhaust metal-loaded zeolites,
catalysts for total toluene oxidation reaction, as a model VOC pollutant, were obtained. Ključne besede: Cu2+ ion exchange, Total toluene oxidation, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, Zeolite Objavljeno v RUNG: 03.06.2021; Ogledov: 2450; Prenosov: 154 Povezava na celotno besedilo Gradivo ima več datotek! Več... |
3. Study of water adsorption on EDTA dealuminated zeolite YO. L. Pliekhov, Olena Pliekhova, Iztok Arčon, Federica Bondino, Elena Magnano, Gregor Mali, Nataša Zabukovec Logar, 2020, izvirni znanstveni članek Opis: Zeolite Y was synthesized and modified with EDTA dealumination procedure. The modified zeolites were
analyzed by X-ray diffraction, X-ray absorption spectroscopy, chemical analysis and water adsorption measurements.
We demonstrated that dealumination with bulk organic acid such as EDTA is able to reduce the
original intense water affinity. Furthermore, it was found that dealumination with EDTA, in contrast with
steaming and HCl dealumination, provides fully controllable, predictable and secure process of Al removal from
the zeolites’ frameworks. The shift of the adsorption isotherm in the low partial pressure range represents an
interesting result for adsorption-based applications. Ključne besede: Zeolite Y
Water sorption
Dealumination
Al XANES
EDTA treatment Objavljeno v RUNG: 05.06.2020; Ogledov: 3546; Prenosov: 0 Gradivo ima več datotek! Več... |
4. SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal fromWastewater under Solar LightAndraž Šuligoj, Jelena Pavlovič, Iztok Arčon, Nevenka Rajić, Nataša Novak Tušar, 2020, izvirni znanstveni članek Opis: Due to their adsorbent, ion exchange and catalytic properties zeolites are suitable for a variety of applications. We report on the photocatalytic activity of a readily available and inexpensive natural zeolite clinoptilolite (Z) containing SnO2 (Sn-Z). The Sn-Z samples with 3–15 wt. % of Sn were prepared by using a precipitation–deposition method. Powder X-ray diffraction analysis showed that the zeolite structure was unaffected by the introduction of the Sn-phase. Diffuse reflectance UV/VIS spectra of the Sn-Z samples confirmed the presence of SnO2 and X-Ray absorption spectroscopy analyses suggested that the SnO2 particles mainly resided on the surface of the clinoptilolite, while ATR-FTIR analysis gave some clues that part of the SnO2 phase was incorporated in the pores of the zeolite. The presence of SnO2 in Sn-Z increased both adsorption capacity and photocatalytic performance which could be partially explained by higher surface area and partially with an increased negative potential of the surface. Adsorption and total degradation of methylene blue (MB) for the Sn-Z with the highest amount of Sn (15 wt.%) was about 30% and 45%, respectively, suggesting a synergetic effect between SnO2 and the clinoptilolite lattice. Reusability tests showed that these catalysts present a promising material for water purification. Ključne besede: SnO2, zeolite, SnO2-clinoptilolite composite, photocatalysis, solar light, methylene blue
removal, wastewater treatment Objavljeno v RUNG: 25.02.2020; Ogledov: 3618; Prenosov: 134 Celotno besedilo (3,50 MB) |
5. Removal of manganese in batch and fluidized bed systems using beads of zeolite a as adsorbentMina Jovanovic, Iztok Arčon, Janez Kovač, Nataša Novak Tušar, Bojana Obradovic, Nevenka Rajić, 2016, izvirni znanstveni članek Opis: In this study the uptake capacity of Mn(II) ions by zeolite A beads was investigated for different initial Mn concentration (100e400 mg Mn dm^-3) in batch mode at 25e55 C. The obtained adsorption capacity varying from 30 to 50 mg Mn g^-1 demonstrated a high affinity of zeolite A towards Mn(II) present in solutions. Kinetic studies indicated the intra-particle diffusion as the rate limiting step up to 45 C with apparent diffusivities in the range (1.2e2.0) x 10^-13 m2 s^-1 and the activation energy of 21.9 kJ mol^-1, which implies strong interactions between the zeolite A and Mn ions. At 55 C ion-exchange became the rate limiting step. The adsorption isotherms were studied at 25 C showing that the Mn adsorption is the best described by the Langmuir model suggesting a homogenous zeolite surface. XPS analysis of the Mnloaded beads showed that there is no surface accumulation of Mn but an almost uniform Mn distribution inside zeolite A, whereas XANES and EXAFS suggested that the adsorption of Mn(II) was followed by the Mn(II) oxidation and oxide formation. Regeneration of the spent zeolite was examined in 8 adsorption/desorption cycles by a chelating Na2EDTA in a fluidized column. It has been found that zeolite A beads could be reused for at least 4 cycles with satisfactory Mn(II) adsorption efficiencies of about 70%. Ključne besede: Zeolite A
Manganese
Adsorption kinetics
EXAFS/XANES
XPS Objavljeno v RUNG: 01.04.2016; Ogledov: 5827; Prenosov: 0 Gradivo ima več datotek! Več... |