Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


21 - 23 / 23
Na začetekNa prejšnjo stran123Na naslednjo stranNa konec
21.
Algorithms matter and one should better understand them
2020, radijska ali televizijska oddaja, podkast, intervju, novinarska konferenca

Ključne besede: algorithm, programming, technology, languages, sonic arts, sound, contemporary art
Objavljeno v RUNG: 23.02.2021; Ogledov: 2303; Prenosov: 23
URL Povezava na celotno besedilo

22.
A map-matching algorithm dealing with sparse cellular fingerprint observations
Andrea Dalla Torre, Paolo Gallo, Donatella Gubiani, Chris Marshall, Angelo Montanari, Federico Pittino, Andrea Viel, 2019, izvirni znanstveni članek

Opis: The widespread availability of mobile communication makes mobile devices a resource for the collection of data about mobile infrastructures and user mobility. In these contexts, the problem of reconstructing the most likely trajectory of a device on the road network on the basis of the sequence of observed locations (map-matching problem) turns out to be particularly relevant. Different contributions have demonstrated that the reconstruction of the trajectory of a device with good accuracy is technically feasible even when only a sparse set of GNSS positions is available. In this paper, we face the problem of coping with sparse sequences of cellular fingerprints. Compared to GNSS positions, cellular fingerprints provide coarser spatial information, but they work even when a device is missing GNSS positions or is operating in an energy saving mode. We devise a new map-matching algorithm, that exploits the well-known Hidden Markov Model and Random Forests to successfully deal with noisy and sparse cellular observations. The performance of the proposed solution has been tested over a medium-sized Italian city urban environment by varying both the sampling of the observations and the density of the fingerprint map as well as by including some GPS positions into the sequence of fingerprint observations.
Ključne besede: Map-matching algorithm, trajectory, cellular fingerprint, Hidden Markov Model
Objavljeno v RUNG: 11.06.2019; Ogledov: 3655; Prenosov: 97
.pdf Celotno besedilo (3,93 MB)

23.
SOLVING PRACTICAL PROBLEMS IN SHIPPING BY USING MATHEMATICAL MODELS
Claudia Pantelie, Camelia Ciobanu, Irina Elena Cristea, 2015, izvirni znanstveni članek

Opis: The purpose of this paper is to highlight how using mathematical algorithms, some practical problems on board can be more easily solved.
Ključne besede: mathematical model, Yu Chen algorithm, Bellman algorithm.
Objavljeno v RUNG: 09.02.2016; Ogledov: 4223; Prenosov: 1
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.01 sek.
Na vrh