Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


31 - 40 / 70
Na začetekNa prejšnjo stran1234567Na naslednjo stranNa konec
31.
Beam Test Results of the ISS-CREAM Calorimeter
H.G. Zhang, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The Cosmic Ray Energetics And Mass experiment for the International Space Station (ISS-CREAM) was installed on the ISS to measure high-energy cosmic-ray elemental spectra for the charge range Z=1 to 26. The ISS-CREAM instrument includes a tungsten scintillating-fiber calorimeter preceded by carbon targets for energy measurements. The carbon targets induces hadronic interactions, and showers of secondary particles develop in the calorimeter. The calorimeter was calibrated with electron beams at CERN. This beam test included position, energy, and angle scans of electron and pion beams together with a high-voltage scan for calibration and characterization. Additionally, an attenuation effect in the scintillating fibers was studied. In this paper, beam test results, including corrections for the attenuation effect, are presented.
Ključne besede: ISS-CREAM, calorimeter, particle accelerator, CERN, electron beam, direct detection, cosmic rays, energy spectrum, composition
Objavljeno v RUNG: 26.09.2023; Ogledov: 579; Prenosov: 4
.pdf Celotno besedilo (1003,73 KB)
Gradivo ima več datotek! Več...

32.
Constraining the sources of ultra-high-energy cosmic rays across and above the ankle with the spectrum and composition data measured at the Pierre Auger Observatory
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, izvirni znanstveni članek

Opis: In this work we present the interpretation of the energy spectrum and mass composition data as measured by the Pierre Auger Collaboration above 6 × 10[sup]17 eV. We use an astrophysical model with two extragalactic source populations to model the hardening of the cosmic-ray flux at around 5 × 10[sup]18 eV (the so-called "ankle" feature) as a transition between these two components. We find our data to be well reproduced if sources above the ankle emit a mixed composition with a hard spectrum and a low rigidity cutoff. The component below the ankle is required to have a very soft spectrum and a mix of protons and intermediate-mass nuclei. The origin of this intermediate-mass component is not well constrained and it could originate from either Galactic or extragalactic sources. To the aim of evaluating our capability to constrain astrophysical models, we discuss the impact on the fit results of the main experimental systematic uncertainties and of the assumptions about quantities affecting the air shower development as well as the propagation and redshift distribution of injected ultra-high-energy cosmic rays (UHECRs).
Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, UHECR propagation, UHECR energy spectrum, UHECR mass composition
Objavljeno v RUNG: 18.08.2023; Ogledov: 626; Prenosov: 8
.pdf Celotno besedilo (2,39 MB)
Gradivo ima več datotek! Več...

33.
Recent results from the Pierre Auger Observatory
Serguei Vorobiov, 2022, objavljeni povzetek znanstvenega prispevka na konferenci (vabljeno predavanje)

Opis: Ultra-high-energy cosmic rays (UHECRs) are mostly protons and heavier nuclei arriving on Earth from space and producing particle cascades in the atmosphere, ”extensive air showers”. As of today, the most precise and high-statistics data set of the rare (≤ 1 particle per sq.km per year above 10[sup]19 eV) UHECR events is obtained by the Pierre Auger Observatory, a large area (~3000 sq.km) hybrid detector in Argentina. The Auger Observatory determines the arrival directions and energies of the primary UHECR particles and provides constraints for their masses. In this talk, I will present and discuss the recent results, including the detailed measurements of the cosmic-ray energy spectrum features, the study of the anisotropies in the UHECR arrival directions at large and intermediate angular scales, the multi-messenger searches, and the inferred cosmic-ray mass composition. Finally, the progress of the current upgrade of the Observatory, "AugerPrime" which is aimed at improving the sensitivity to the mass composition of ultra-high-energy cosmic rays, will be presented.
Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, UHECR mass composition, energy spectrum, anisotropies, AugerPrime upgrade
Objavljeno v RUNG: 23.12.2022; Ogledov: 1262; Prenosov: 7
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

34.
35.
e/p separation study using the ISS-CREAM top and bottom counting detectors
S. C. Kang, Y. Amarea, D. Angelaszek, N. Anthony, G. H. Choi, M. Chung, M. Copley, L. Derome, L. Eraud, C. Falana, Jon Paul Lundquist, 2019, objavljeni znanstveni prispevek na konferenci

Opis: Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) is an experiment for studying the origin, acceleration, and propagation mechanisms of high-energy cosmic rays. The ISS-CREAM instrument was launched on the 14th of August 2017 to the ISS aboard the SpaceX-12 Dragon spacecraft. The Top and Bottom Counting Detectors (TCD/BCD) are parts of the ISS-CREAM instrument and designed for studying electron and gamma-ray physics. The TCD/BCD each consist of an array of 20 × 20 photodiodes on a plastic scintillator. The TCD/BCD can separate electrons from protons by using the difference between the shapes of electromagnetic and hadronic showers in the high energy region. The Boosted Decision Tree (BDT) method, which is a deep learning method, is used in this separation study. We will present results of the electron/proton separation study and rejection power in various energy ranges.
Ključne besede: instrumentations, high energy cosmic rays, particle detectors, composition
Objavljeno v RUNG: 08.02.2021; Ogledov: 2171; Prenosov: 0
Gradivo ima več datotek! Več...

36.
37.
Study of UHECR Composition Using Telescope Array's Middle Drum Detector and Surface Array in Hybrid Mode
Jon Paul Lundquist, 2016, objavljeni znanstveni prispevek na konferenci

Opis: The seven year Telescope Array (TA) Middle Drum hybrid composition measurement shows agreement between Ultra-High Energy Cosmic Ray (UHECR) data and a light composition obtained with QGSJetII-03 or QGSJet-01c models. The data are incompatible with a pure iron composition, for all models examined, for energies log10(E/eV)>18.4. This is consistent with previous TA results. This analysis is presented using an updated version of the pattern recognition analysis (PRA) technique developed by TA.
Ključne besede: UHECR, cosmic rays, hybrid detection, composition
Objavljeno v RUNG: 29.04.2020; Ogledov: 2436; Prenosov: 86
.pdf Celotno besedilo (150,19 KB)

38.
Composition Measurements via Depth of Airshower Maximum at the Telescope Array
Jon Paul Lundquist, W. Hanlon, 2018, objavljeni znanstveni prispevek na konferenci

Opis: Telescope Array (TA) was designed to answer important questions about the UHECR flux with energies above 10^17 eV such as spectrum, arrival direction, and mass composition. Because the UHECR flux is rapidly falling in this energy region, TA’s large exposure makes it one of the few experiments in the world that can adequately explore these issues. Composition is particularly difficult to measure because mass can not be measured directly due to the low flux. TA’s multiple methods of observing UHECR induced air showers will be explained, as well as how composition can be measured by these methods. Good agreement among the different measurement techniques is found leading to greater confidence in measuring UHECR mass composition and a way to test and understand TA systematic uncertainties.
Ključne besede: UHECR, cosmic rays, composition
Objavljeno v RUNG: 29.04.2020; Ogledov: 2497; Prenosov: 103
.pdf Celotno besedilo (758,27 KB)

39.
Telescope Array Composition Summary
W. Hanlon, Jon Paul Lundquist, 2018, objavljeni znanstveni prispevek na konferenci

Opis: Ultra high energy cosmic ray (UHECR) chemical composition is important to resolving questions about the locations of UHECR sources and propagation models. Because composition can only be deduced by a process of statistical inference via the observation of air shower maxima (Xmax), UHECR observatories with large data collection rates must be employed to reduce statistical fluctuations. Telescope Array (TA), the largest cosmic ray observatory in the Northern Hemisphere, is designed to answer the question of UHECR composition, as well as other important features of cosmic ray flux, by combining a large array of over 500 scintillation surface detectors spread over 700 km^2, and three fluorescence detector stations overlooking the array. With eight years of data recorded, results of the measurements of UHECR composition will be presented. UHECR composition is traditionally measured by comparing the first and second moments of the distributions of shower maxima, which evolves with energy, between data and simulations. Reducing statistical fluctuations in the data helps to distinguish between different primary elements in the flux. In the current generation of cosmic ray observatories, UHECR data sets are large enough, and statistical uncertainties are now small enough, that we can safely distinguish between very light primary source flux (i.e., protons) and heavy flux (i.e., iron). Reducing systematic uncertainties is also important though, since large systematic shifts in air shower maxima will influence the interpretation of the data when compared to models. TA therefore employs different methods of measuring Xmax, including stereo air fluorescence, air fluorescence-surface counter hybrid, and a new technique using only surface counters. Updated results of TA hybrid composition among the different methods are presented using up to eight years of data. Agreement among all TA hybrid composition results are shown as well as detailed systematic errors which can be further explored by comparing composition results of the different measurement methods. Comparison of TA Xmax data are compared to different composition models as well.
Ključne besede: UHECR, Cosmic rays, composition
Objavljeno v RUNG: 29.04.2020; Ogledov: 2420; Prenosov: 83
.pdf Celotno besedilo (499,33 KB)

40.
Depth of Ultra High Energy Cosmic Ray Induced Air Shower Maxima Measured by the Telescope Array Black Rock and Long Ridge FADC Fluorescence Detectors and Surface Array in Hybrid Mode
R.U. Abbasi, Jon Paul Lundquist, 2018, izvirni znanstveni članek

Opis: The Telescope Array (TA) observatory utilizes fluorescence detectors and surface detectors (SDs) to observe air showers produced by ultra high energy cosmic rays in Earth's atmosphere. Cosmic-ray events observed in this way are termed hybrid data. The depth of air shower maximum is related to the mass of the primary particle that generates the shower. This paper reports on shower maxima data collected over 8.5 yr using the Black Rock Mesa and Long Ridge fluorescence detectors in conjunction with the array of SDs. We compare the means and standard deviations of the observed Xmax distributions with Monte Carlo Xmax distributions of unmixed protons, helium, nitrogen, and iron, all generated using the QGSJet II-04 hadronic model. We also perform an unbinned maximum likelihood test of the observed data, which is subjected to variable systematic shifting of the data Xmax distributions to allow us to test the full distributions, and compare them to the Monte Carlo to see which elements are not compatible with the observed data. For all energy bins, QGSJet II-04 protons are found to be compatible with TA hybrid data at the 95% confidence level after some systematic Xmax shifting of the data. Three other QGSJet II-04 elements are found to be compatible using the same test procedure in an energy range limited to the highest energies where data statistics are sparse.
Ključne besede: acceleration of particles, astrochemistry, astroparticle physics, cosmic rays, elementary particles, UHECR, composition
Objavljeno v RUNG: 27.04.2020; Ogledov: 3022; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.05 sek.
Na vrh