Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
FR-0 jetted active galaxies : extending the zoo of candidate sites for UHECR acceleration
Lukas Merten, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Serguei Vorobiov, Fabrizio Tavecchio, Giacomo Bonnoli, Jon Paul Lundquist, Chiara Righi, 2021, objavljeni znanstveni prispevek na konferenci

Opis: Fanaroff-Riley (FR) 0 radio galaxies form a low-luminosity extension to the well-established ultra-high-energy cosmic-ray (UHECR) candidate accelerators FR-1 and FR-2 galaxies. Their much higher number density — up to a factor five times more numerous than FR-1 with z ≤ 0.05 — makes them good candidate sources for an isotropic contribution to the observed UHECR flux. Here, the acceleration and survival of UHECR in prevailing conditions of the FR-0 environment are discussed. First, an average spectral energy distribution (SED) is compiled based on the FR0CAT. These photon fields, composed of a jet and a host galaxy component, form a minimal target photon field for the UHECR, which will suffer from electromagnetic pair production, photo-disintegration, photo-meson production losses, and synchrotron radiation. The two most promising acceleration scenarios based on Fermi-I order and gradual shear acceleration are discussed as well as different escape scenarios. When an efficient acceleration mechanism precedes gradual shear acceleration, e.g., Fermi-I orothers, FR-0 galaxies are likely UHECR accelerators. Gradual shear acceleration requires a jet Lorentz factor of Gamma>1.6, to be faster than the corresponding escape. In less optimistic models, a contribution to the cosmic-ray flux between the knee and ankle is expected to be relatively independent of the realized turbulence and acceleration.
Ključne besede: jetted active galaxies, FR-0 radiogalaxies, ultra-high energy cosmic rays, cosmic ray acceleration, cosmic ray energy losses
Objavljeno v RUNG: 16.08.2021; Ogledov: 1777; Prenosov: 3
.pdf Celotno besedilo (1,13 MB)

Iskanje izvedeno v 0.01 sek.
Na vrh