Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


21 - 30 / 43
Na začetekNa prejšnjo stran12345Na naslednjo stranNa konec
21.
A catalog of the highest-energy cosmic rays recorded during Phase I of operation of the Pierre Auger Observatory
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, izvirni znanstveni članek

Opis: A catalog containing details of the highest-energy cosmic rays recorded through the detection of extensive air showers at the Pierre Auger Observatory is presented with the aim of opening the data to detailed examination. Descriptions of the 100 showers created by the highest-energy particles recorded between 2004 January 1 and 2020 December 31 are given for cosmic rays that have energies in the range 78–166 EeV. Details are also given on a further nine very energetic events that have been used in the calibration procedure adopted to determine the energy of each primary. A sky plot of the arrival directions of the most energetic particles is shown. No interpretations of the data are offered.
Ključne besede: ultra-high-energy cosmic rays, cosmic ray air showers, experimental data, catalogs, Pierre Auger Observatory
Objavljeno v RUNG: 09.02.2023; Ogledov: 2054; Prenosov: 19
.pdf Celotno besedilo (8,87 MB)
Gradivo ima več datotek! Več...

22.
Application of machine learning techniques for cosmic ray event classification and implementation of a real-time ultra-high energy photon search with the surface detector of the Pierre Auger Observatory : dissertation
Lukas Zehrer, 2021, doktorska disertacija

Opis: Despite their discovery already more than a century ago, Cosmic Rays (CRs) still did not divulge all their properties yet. Theories about the origin of ultra-high energy (UHE, > 10^18 eV) CRs predict accompanying primary photons. The existence of UHE photons can be investigated with the world’s largest ground-based experiment for detection of CR-induced extensive air showers (EAS), the Pierre Auger Observatory, which offers an unprecedented exposure to rare UHE cosmic particles. The discovery of photons in the UHE regime would open a new observational window to the Universe, improve our understanding of the origin of CRs, and potentially uncloak new physics beyond the standard model. The novelty of the presented work is the development of a "real-time" photon candidate event stream to a global network of observatories, the Astrophysical Multimessenger Observatory Network (AMON). The stream classifies CR events observed by the Auger surface detector (SD) array as regards their probability to be photon nominees, by feeding to advanced machine learning (ML) methods observational air shower parameters of individual CR events combined in a multivariate analysis (MVA). The described straightforward classification procedure further increases the Pierre Auger Observatory’s endeavour to contribute to the global effort of multi-messenger (MM) studies of the highest energy astrophysical phenomena, by supplying AMON partner observatories the possibility to follow-up detected UHE events, live or in their archival data.
Ključne besede: astroparticle physics, ultra-high energy cosmic rays, ultra-high energy photons, extensive air showers, Pierre Auger Observatory, multi-messenger, AMON, machine learning, multivariate analysis, dissertations
Objavljeno v RUNG: 27.10.2021; Ogledov: 3866; Prenosov: 197
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

23.
24.
Calibration of the underground muon detector of the Pierre Auger Observatory
A. Aab, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Marta Trini, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2021, izvirni znanstveni članek

Opis: To obtain direct measurements of the muon content of extensive air showers with energy above 10[sup]16.5 eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 m[sup]2-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to the shower muon content allows for the study of both of the composition of primary cosmic rays and of high-energy hadronic interactions in the forward direction. As the muon density can vary between tens of muons per m[sup]2 close to the intersection of the shower axis with the ground to much less than one per m[sup]2 when far away, the necessary broad dynamic range is achieved by the simultaneous implementation of two acquisition modes in the read-out electronics: the binary mode, tuned to count single muons, and the ADC mode, suited to measure a high number of them. In this work, we present the end-to-end calibration of the muon detector modules: first, the SiPMs are calibrated by means of the binary channel, and then, the ADC channel is calibrated using atmospheric muons, detected in parallel to the shower data acquisition. The laboratory and field measurements performed to develop the implementation of the full calibration chain of both binary and ADC channels are presented and discussed. The calibration procedure is reliable to work with the high amount of channels in the UMD, which will be operated continuously, in changing environmental conditions, for several years.
Ključne besede: ultra-high energy cosmic rays, extensive air showers (EAS), EAS muonic component, Pierre Auger Observatory, underground muon detector, detector calibration
Objavljeno v RUNG: 14.04.2021; Ogledov: 3537; Prenosov: 140
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

25.
Search for large-scale anisotropy on arrival directions of ultra-high-energy cosmic rays observed with the telescope array experiment
R. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, Douglas R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, izvirni znanstveni članek

Opis: Motivated by the detection of a significant dipole structure in the arrival directions of ultra-high-energy cosmic rays above 8 EeV reported by the Pierre Auger Observatory (Auger), we search for a large-scale anisotropy using data collected with the surface detector array of the Telescope Array Experiment (TA). With 11 yr of TA data, a dipole structure in a projection of the R.A. is fitted with an amplitude of 3.3% ± 1.9% and a phase of 131° ± 33°. The corresponding 99% confidence-level upper limit on the amplitude is 7.3%. At the current level of statistics, the fitted result is compatible with both an isotropic distribution and the dipole structure reported by Auger.
Ključne besede: cosmic rays, ultra-high-energy cosmic radiation, cosmic ray sources, cosmic ray showers, cosmic ray detectors, cosmic ray astronomy, extragalactic astronomy
Objavljeno v RUNG: 05.02.2021; Ogledov: 3200; Prenosov: 0
Gradivo ima več datotek! Več...

26.
27.
28.
29.
30.
Iskanje izvedeno v 0.05 sek.
Na vrh