Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


21 - 30 / 36
Na začetekNa prejšnjo stran1234Na naslednjo stranNa konec
21.
22.
23.
24.
25.
New air fluorescence detectors employed in the Telescope Array experiment
H. Tokuno, Jon Paul Lundquist, 2012, izvirni znanstveni članek

Opis: Since 2007, the Telescope Array (TA) experiment, based in Utah, USA, has been observing ultra high energy cosmic rays to understand their origins. The experiment includes a surface detector (SD) array and three fluorescence detector (FD) stations. The FD stations, installed surrounding the SD array, measure the air fluorescence light emitted from extensive air showers (EASs) for precise determination of their energies and species. The detectors employed at one of the three FD stations were relocated from the High Resolution Fly's Eye (HiRes) experiment. At the other two stations, newly designed detectors were constructed for the TA experiment. An FD consists of a primary mirror and a camera equipped with photomultiplier tube pixels. To obtain the EAS parameters with high accuracy, understanding the FD optical characteristics is important. In this paper, we report the characteristics and installation of the new FDs and the performances of the FD components. The results of the monitored mirror reflectance during the observation time are also described in this report.
Ključne besede: Ultra high energy cosmic rays, Extensive air showers, Air fluorescence light detectors
Objavljeno v RUNG: 19.05.2020; Ogledov: 2423; Prenosov: 0
Gradivo ima več datotek! Več...

26.
SEARCH FOR NEUTRINOS AT EXTREME ENERGIES WITH THE PIERRE AUGER OBSERVATORY
Marta Trini, 2019, doktorska disertacija

Opis: The detection of Ultra-High-Energy (UHE) neutrinos around and above 10 18 eV (1 EeV) can be the key to answering the long-standing question of the origin of the UHE cosmic rays. The Pierre Auger Observatory is the largest experiment that can detect the extensive air showers produced when the cosmic rays and neutrinos interact in the earth’s atmosphere. In particular, with the Infilled array of the Surface Detector of the Pierre Auger Observatory we can detect sub-EeV neutrino-induced particle showers. In this thesis we demonstrate that it is possible to discriminate neutrino-induced showers from the background showers produced by the more numerous nucleonic cosmic rays. The sensitivity to neutrinos is enhanced in the inclined directions with respect to the vertical to the ground, where cosmic ray-induced showers starting in the upper layers of the atmosphere are dominated by the muonic component of the shower, while deeply- penetrating neutrino showers in contrast exhibit a large electromagnetic component. Based on this idea in this thesis we have developed a search procedure for UHE neutrinos that consists on selecting inclined events in the Infilled array of the Pierre Auger Observatory in which the signals in the water-Cherenkov stations are spread in time, characteristic of the presence of electromagnetic component in the shower. We have established a complete chain of criteria to first select the inclined events among the sample of all events triggering the Infilled array, and then identifying those that have a large electromagnetic component at ground, and hence can be considered as neutrino candidates. We have identified a single variable, the so-called area-over-peak averaged over all of the stations in each event, as a suitable observable for neutrino identification purposes. The neutrino selection was established using extensive Monte Carlo simulations of the neutrino-induced showers in the Infilled array of Auger as well as a fraction of the data assumed to be totally constituted of background nucleonic cosmic rays. Using these neutrino simulations we have also computed the exposure of the Infilled array to UHE neutrinos in the period 1 January 04 - 31 December 2017. Associated systematic uncertainties on the exposure are also described. Expecting no candidate neutrinos in the period up to 31 December 2017, and adopting a differential neutrino diffuse flux dN ν /dE ν = k E ν −2 in the energy range from 0.05 to 1 EeV, we have obtained a 90% C.L. upper limit on the all neutrino flavor, k 90 < 7.97 × 10 −8 GeV cm −2 s −1 sr −1 .
Ključne besede: astroparticles, astrophysical neutrinos, cosmic rays showers, Pierre Auger Observatory, Infilled array
Objavljeno v RUNG: 03.10.2019; Ogledov: 4730; Prenosov: 146
.pdf Celotno besedilo (6,02 MB)

27.
Mass composition of cosmic rays with energies from 10^17.2 eV to 10^20 eV using surface and fluorescence detectors of the Pierre Auger Observatory
Gašper Kukec Mezek, 2018, objavljeni znanstveni prispevek na konferenci

Opis: Ultra-high-energy cosmic rays (UHECRs) are highly energetic particles with EeV energies, exceeding the capabilities of man-made colliders. They hold information on extreme astrophysical processes that create them and the medium they traverse on their way towards Earth. However, their mass composition at such energies is still unclear, because data interpretation depends on our choice of high energy hadronic interaction models. With its hybrid detection method, the Pierre Auger Observatory has the possibility to detect extensive air showers with an array of surface water-Cherenkov stations (SD) and fluorescence telescopes (FD). We present recent mass composition results from the Pierre Auger Collaboration using observational parameters from SD and FD measurements. Using the full dataset of the Pierre Auger Observatory, implications on composition can be made for energies above 10^17.2 eV.
Ključne besede: astroparticle physics, ultra-high energy cosmic rays, extensive air showers, mass composition, Pierre Auger Observatory, fluorescence telescopes, water-Cherenkov stations
Objavljeno v RUNG: 24.05.2019; Ogledov: 3298; Prenosov: 110
.pdf Celotno besedilo (573,00 KB)

28.
Mass composition of ultra-high energy cosmic rays at the Pierre Auger Observatory
Gašper Kukec Mezek, 2019, doktorska disertacija

Opis: Cosmic rays with energies above 10^18 eV, usually referred to as ultra-high energy cosmic rays (UHECR), have been a mystery from the moment they have been discovered. Although we have now more information on their extragalactic origin, their direct sources still remain hidden due to deviations caused by galactic magnetic fields. Another mystery, apart from their production sites, is their nature. Their mass composition, still uncertain at these energies, would give us a better understanding on their production, acceleration, propagation and capacity to produce extensive air showers in the Earth's atmosphere. Mass composition studies of UHECR try to determine their nature from the difference in development of their extensive air showers. In this work, observational parameters from the hybrid detection system of the Pierre Auger Observatory are used in a multivariate analysis to obtain the mass composition of UHECR. The multivariate analysis (MVA) approach combines a number of mass composition sensitive variables and tries to improve the separation between different UHECR particle masses. Simulated distributions of different primary particles are fitted to measured observable distributions in order to determine individual elemental fractions of the composition. When including observables from the surface detector, we find a discrepancy in the estimated mass composition between a mixed simulation sample and the Pierre Auger data. Our analysis results from the Pierre Auger data are to a great degree independent on hadronic interaction models. Although they differ at higher primary masses, the different models are more consistent, when combining fractions of oxygen and iron. Compared to previously published results, the systematic uncertainty from hadronic interaction models is roughly four times smaller. Our analysis reports a predominantly heavy composition of UHECR, with more than a 50% fraction of oxygen and iron at low energies. The composition is then becoming heavier with increasing energy, with a fraction of oxygen and iron above 80% at the highest energies.
Ključne besede: astroparticle physics, ultra-high energy cosmic rays, extensive air showers, mass composition, Pierre Auger Observatory, machine learning, multivariate analysis
Objavljeno v RUNG: 03.04.2019; Ogledov: 4826; Prenosov: 185
.pdf Celotno besedilo (17,53 MB)

29.
30.
Iskanje izvedeno v 0.06 sek.
Na vrh