Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Downward Terrestrial Gamma-ray Flashes at the Pierre Auger Observatory?
R. Colalillo, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: At the Pierre Auger Observatory, designed primarily to study ultra-high-energy cosmic rays, phenomena related to atmospheric electricity are also observed. Particularly, events have been detected with the surface detector, characterized by long-lasting signals (tens of microseconds) and event footprints much larger (up to 200 km2) than those produced by the highest energy cosmic rays. Moreover, some of them appear to be accompanied by smaller events occurring in the same area within about 1 ms and probably produced by the same phenomenon. A previously reported correlation with the World Wide Lightning Location Network, as well as the observation of very low-altitude clouds, confirm that such events are related to thunderstorms. An ad-hoc reconstruction points to high-energy particles being produced very close to the ground, suggesting that they originate from electrons accelerated to relativistic energies in strong electric fields inside low clouds, as is the case for terrestrial gamma-ray flashes above thunderstorms. A clear explanation of the observed phenomenon is hindered by two facts. One is that the rate of such events, detected serendipitously, is very small (less than 2 events/year) and decreases further after optimization of the surface detector trigger for low-energy shower-events. The second is that most events show a puzzling lack of signals in the central part of the footprint. We have studied in detail both effects and will present such studies here. We developed a strategy for a dedicated trigger to enhance the detection efficiency for these events associated with atmospheric-electricity events.
Ključne besede: Pierre Auger Observatory, surface detection, ultra-high energy, cosmic rays, photons, electrons, gamma-ray flashes, lightning
Objavljeno v RUNG: 29.09.2023; Ogledov: 71; Prenosov: 3
.pdf Celotno besedilo (2,42 MB)
Gradivo ima več datotek! Več...

Results from the Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment
E.S. Seo, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment took high-energy cosmic ray data for 539 days after its successful installation on the ISS in August 2017. The ISS-CREAM instrument is configured with complementary particle detectors capable of measuring elemental spectra for Z = 1 - 26 nuclei in the energy range 10^12 – 10^15 eV; as well as electrons at multi-TeV energies. The goal is to understand cosmic ray origin, acceleration, and propagation by extending direct measurements of cosmic rays to energies that overlap the energy region of air showers measurements. The four layers of finely segmented Silicon Charge Detectors provide precise charge measurements. They have been designed to minimize hits of accompanying backscattered particles in the same segment as the incident cosmic ray particle to avoid charge misidentification. The sampling tungsten/scintillating-fiber calorimeter, which is identical to the calorimeter for prior CREAM balloon flights, provides energy measurements. In addition, scintillator-based Top and Bottom Counting Detectors distinguish electrons from nuclei. Our analysis indicates that the data extend well above 100 TeV. Recent results from the ongoing analysis are presented.
Ključne besede: ISS-CREAM, silicon charge detector, calorimeter, direct detection, cosmic rays, electrons, energy spectrum, composition
Objavljeno v RUNG: 26.09.2023; Ogledov: 98; Prenosov: 3
.pdf Celotno besedilo (901,39 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.02 sek.
Na vrh