Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 9 / 9
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Pharmacological application of thermal Lens technique - A thermal diffusivity study
Swapna Mohanachandran Nair Sindhu, 2018, izvirni znanstveni članek

Opis: The photothermal phenomenon has emerged as a potential tool for the nondestructive evaluation of thermal and optical properties of materials. Thermal analysis of drugs is an unavoidable part of preformulation study, as temperature variations can induce structural changes of the constituents of drugs. Techniques based on photothermal phenomena are highly sensitive, as only the absorbed radiation contributes to the signal. Periodic illumination and subsequent nonradiative de-excitation generate thermal lens signals of various types within and around the sample. Variation of thermal diffusivity with a concentration of the commonly used drug terbutaline is studied through the single-beam thermal lens technique. The ultraviolet–visible spectrum of the drug shows strong absorption around 500 nm, which suggests the possible wavelengths that can be used for the study. It is found that concentration of the drug in liquid form decides its thermal stability, as its thermal diffusivity varies with concentration. The study gives information about the optimum value for the concentration of the drug noted above for which the chance of thermal stability is high.
Ključne besede: thermal lens, thermal diffusivity, pharmacology, drug
Objavljeno v RUNG: 30.06.2022; Ogledov: 681; Prenosov: 0
Gradivo ima več datotek! Več...

Covalent Calix[4]arene Nanocapsules for Efficient Camptothecin Delivery
Dinesh Shetty, Tina Skorjanc, Ali Trabolsi, 2019, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: drug delivery, calixarene, nanocapsule, self-assembly, camptothecin, breast cancer
Objavljeno v RUNG: 10.09.2020; Ogledov: 2058; Prenosov: 0
Gradivo ima več datotek! Več...

Covalent organic frameworks for biomedical and environmental applications
Tina Skorjanc, predavanje na tuji univerzi

Ključne besede: pollutant removal, covalent organic polymers, drug delivery, imaging
Objavljeno v RUNG: 03.09.2020; Ogledov: 2084; Prenosov: 0
Gradivo ima več datotek! Več...

Vjekoslava Car, 2016, magistrsko delo

Opis: A rapid, selective, robust and sensitive analytical assay method, operating in a short time frame with acceptable levels of precision, linear range and the accuracy necessary for successful Mur ligases inhibitors discovery, was developed. An LC-MS/MS analytical procedure was designed for the determination of a MurD ligase reaction product (UMAG). The special focus of this work was on UDP-N-acetylmuramyl-L-alanine:D-glutamate ligase (MurD) activity. The assay method is especially valuable as an orthogonal (secondary) assay for the primary high throughput fluorescent-based assay screening of potential Mur ligase inhibitors. The LC-MS/MS assay is fully compatible with the components from the primary fluorescent-based assay and enables the analysis of the same samples by both methodologies. The presented LC-MS/MS assay procedure is used for the evaluation of the false positive hits (molecules) from the primary, fluorescence based, high throughput screening assay experiments. This is important for the elimination of false positive hits from the prohibitively expensive and time-consuming investigation process. Method development describes the evaluation and optimization of the various stages of sample preparation, chromatographic separation, MS/MS determination and quantification. An enzyme reaction is performed in a 96-well plate. The quenched reaction mixture samples were spiked with an internal standard (phenacetin). The permeate was injected onto the U(H)PLC-MS/MS triple quadrupole system after sample ultrafiltration. Chromatographic separation was achieved on the ACQUITY UPLCTM HSS T3 column (100 x 2.1 mm i.d., 1.8 µm particle size) using an ammonium format buffer at pH 2.8 and acetonitrile as eluent. Elution initiated with an isocratic-hold for 1.1 min, followed by a two-step linear gradient of up to 3 min, giving a total run time of 5 min including equilibration. The flow rate was kept at a constant 0.4 mL/min. UMAG quantitative analysis was performed by positive electrospray ionization, followed by tandem mass spectrometry (ESI-MS/MS). The analytical assay quantifies UMAG in a linear range from 0.25 to 20 µM using 70 µL of samples. Validation results demonstrated that UMAG concentrations can be accurately and precisely determined in samples from the primary assay. Evaluation of inhibitory activities of compounds measured by both the fluorescence and the LC-MS/MS method demonstrated that the values were in a very good agreement. This analytical method can be used to screen a compound library at a defined concentration of each compound to obtain the percentage of inhibition, or with a series of compound concentrations to obtain inhibition potency of a compound (IC50). The selected Lek compounds no. 1 and 2 from the virtual screening campaign were presented, tested and further investigated due to the expression of significant MurD ligase inhibitory action acquired by primary high throughput tests. This assay has been developed for MurD, but during development, chromatographic and MS/MS conditions for UM and UMA were studied and defined as well. Therefore, this analytical assay method can easily be applied to other Mur ligases (i.e. MurC, MurE) enzyme activity monitoring in the process of bacteria cell wall peptidoglycan formation. This method enables the identification of many different Mur ligase inhibitors in a continued search for new Gram positive and Gram negative bacteria antibiotics.
Ključne besede: Mur ligases, UDP-N-acetylmuramyl-L-alanine:D-glutamate (MurD) inhibitors, UNAM-Ala-Glu, LC-MS/MS, liquid chromatography, tandem mass spectrometry, antibiotics, drug discovery
Objavljeno v RUNG: 23.09.2016; Ogledov: 6291; Prenosov: 268
.pdf Celotno besedilo (2,62 MB)

Iskanje izvedeno v 0.05 sek.
Na vrh