Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


81 - 90 / 351
Na začetekNa prejšnjo stran567891011121314Na naslednjo stranNa konec
81.
A study of analysis method for the identification of UHECR source type
F. Yoshida, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The autocorrelation analysis using the arrival direction of Ultra High Energy Cosmic Rays (UHECRs) has been previously reported by the Telescope Array (TA) experiment. It is expected that the autocorrelation function reflects the source distribution. We simulate the expected arrival direction distribution of the cosmic rays using the catalogs of candidate sources. We take into account random deflection in the magnetic fields, with the magnitude of deflection determined by the charge and energy of the cosmic rays, coherence length and magnitude of the extragalactic magnetic field (EGMF), and by distance to source. In addition, in order to compare with the results of TA experiment, we consider the TA exposure. We compare the autocorrelation of the arrival directions corresponding to different source catalogs with the isotropic distribution. We calculate the autocorrelation function for each type of source candidates using this procedure. We will discuss the ability of this method to identify the source type of UHECRs.
Ključne besede: Telescope Array, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, energy spectrum, composition, anisotropy, autocorrelation, source models, magnetic fields
Objavljeno v RUNG: 04.10.2023; Ogledov: 1137; Prenosov: 9
.pdf Celotno besedilo (2,71 MB)
Gradivo ima več datotek! Več...

82.
Update of the Offline Framework for AugerPrime
L. Nellen, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: Work on the Offline Framework for the Pierre Auger Observatory was started in 2003 to create a universal framework for event reconstruction and simulation. The development and installation of the AugerPrime upgrade of the Pierre Auger Observatory require an update of the Offline Framework to handle the additional detector components and the upgraded Surface Detector Electronics. The design of the Offline Framework proved to be sufficiently flexible to accommodate the changes needed to be able to handle the AugerPrime detector. This flexibility has been a goal since the development of the code started. The framework separates data structures from processing modules. The detector components map directly onto data structures. It was straightforward to update or add processing modules to handle the additional information from the new detectors. We will discuss the general structure of the Offline Framework, explaining the design decisions that provided its flexibility and point out the few of the features of the original design that required deeper changes, which could have been avoided in hindsight. Given the disruptive nature of the AugerPrime upgrade, the developers decided that the update for AugerPrime was the moment to change also the language standard for the implementation and move to the latest version of C++, to break strict backward compatibility eliminating deprecated interfaces, and to modernize the development infrastructure. We will discuss the changes that were made to the structure in general and the modules that were added to the framework to handle the new detector components.
Ključne besede: Pierre Auger Observatory, AugerPrime, indirect detection, surface detection, ground array, fluorescence detection, ultra-high energy, cosmic rays, event reconstruction, simulation, software framework
Objavljeno v RUNG: 04.10.2023; Ogledov: 1205; Prenosov: 5
.pdf Celotno besedilo (1,12 MB)
Gradivo ima več datotek! Več...

83.
The upgrade of the Pierre Auger Observatory with the Scintillator Surface Detector.
G. Cataldi, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: Since its full commissioning in 2008, the Pierre Auger Observatory has consistently demonstrated its scientific productivity. A major upgrade of the Surface Detector array (SD) improves the capabilities of measuring the different components of extensive air showers. One of the elements of the upgrade consists of new Scintillator Surface Detectors (SSD) placed on top of the Water-Cherenkov stations of the SD. At the Observatory, the integration of the SSD components and their deployment in the array is well advanced. In this paper, the main challenges and characteristics of the construction and installation will be reviewed. Started in 2016, an Engineering Array of twelve upgraded stations has been taking data in the field. In March 2019, a preproduction array of 77 SSDs started data acquisition with an adapted version of non-upgraded electronics. It is collecting events and proving the goodness of SSD design. Since December 2020, the upgraded electronics boards are being deployed in the field together with the photomultiplier tubes, increasing the number of SSD detectors, which are taking data continuosly with good stability. In this paper, the-long term performance of a subset of stations acquiring data for more than two years will be discussed. The data collected so far demonstrate the quality of the new detectors and the physics potential of the upgrade project
Ključne besede: Pierre Auger Observatory, indirect detection, surface detection, ground array, scintillator surface detectors, ultra-high energy, cosmic rays
Objavljeno v RUNG: 04.10.2023; Ogledov: 921; Prenosov: 5
.pdf Celotno besedilo (3,56 MB)
Gradivo ima več datotek! Več...

84.
Telescope Array Surface Detector Energy and Arrival Direction Estimation Using Deep Learning
O. Kalashev, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: A novel ultra-high-energy cosmic rays energy and arrival direction reconstruction method for Telescope Array surface detector is presented. The analysis is based on a deep convolutional neural network using detector signal time series as the input and the network is trained on a large Monte-Carlo dataset. This method is compared in terms of statistical and systematic energy and arrival direction determination errors with the standard Telescope Array surface detector event reconstruction procedure.
Ključne besede: Telescope Array, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, energy, arrival directions, reconstruction, machine learning, neural network
Objavljeno v RUNG: 04.10.2023; Ogledov: 1012; Prenosov: 6
.pdf Celotno besedilo (1,10 MB)
Gradivo ima več datotek! Več...

85.
The status of the TALE surface detector array and TALE infill project
A. Iwasakia, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: Routine hybrid observations of the surface detectors (SD) in conjunction with the fluorescence detectors (FD) of the Telescope Array Low-energy Extension (TALE) began in November 2018. In this presentation, we will describe the simulation studies of detector aperture and resolution of the TALE SD, and report on the latest observation results other than the energy spectrum. We are also in the process of expanding the experiment by 50 SDs, with even smaller nearest-neighbor spacing, in order lower the energy threshold to match that of the Cherenkov-dominated events seen by the FD. Details of the upgrade and expected performance of this new extension will be discussed.
Ključne besede: Telescope Array, TALE, low energy extension, indirect detection, surface detection, hybrid detection, ground array, fluorescence detection, ultra-high energy, cosmic rays
Objavljeno v RUNG: 04.10.2023; Ogledov: 1028; Prenosov: 81
.pdf Celotno besedilo (1011,84 KB)
Gradivo ima več datotek! Več...

86.
Expected performance of the AugerPrime Radio Detector
F. Schlüter, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The AugerPrime Radio Detector will significantly increase the sky coverage of mass-sensitive measurements of ultra-high energy cosmic rays with the Pierre Auger Observatory. The detection of highly inclined air showers with the world’s largest 3000km^2 radio-antenna array in coincidence with the Auger water-Cherenkov detector provides a clean separation of the electromagnetic and muonic shower components. The combination of these highly complementary measurements yields a strong sensitivity to the mass composition of cosmic rays. We will present the first results of an end-to-end simulation study of the performance of the AugerPrime Radio Detector. The study features a complete description of the AugerPrime radio antennas and reconstruction of the properties of inclined air showers, in particular the electromagnetic energy. The performance is evaluated utilizing a comprehensive set of simulated air showers together with recorded background. The estimation of an energy- and direction-dependent aperture yields an estimation of the expected 10-year event statistics. The potential to measure the number of muons in air showers with the achieved statistics is outlined. Based on the achieved energy resolution, the potential to discriminate between different cosmic-ray primaries is presented.
Ključne besede: Pierre Auger Observatory, AugerPrime, indirect detection, radio detection, radio antenna array, ultra-high energy, cosmic rays, air-shower muons, composition
Objavljeno v RUNG: 04.10.2023; Ogledov: 932; Prenosov: 6
.pdf Celotno besedilo (1,85 MB)
Gradivo ima več datotek! Več...

87.
First results from the AugerPrime Radio Detector
T. Fodran, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory investigates the properties of the highest-energy cosmic rays with unprecedented precision. The aim of the AugerPrime upgrade is to improve the sensitivity to the primary particle type. The improved mass sensitivity is the key to exploring the origin of the highest-energy particles in the Universe. The purpose of the Radio Detector (as part of AugerPrime) is to extend the sensitivity of the mass measurements to zenith angles in the range from 65° to 85°. A radio antenna, sensitive in two polarization directions and covering a bandwidth from 30 to 80 MHz, will be added to each of the 1661 surface detector stations over the full 3000 km^2 area, forming the world’s largest radio array for the detection of cosmic particles. Since November 2019, an engineering array comprised of ten stations has been installed in the field. The radio antennas are calibrated using the Galactic (diffuse) emission. The sidereal modulation of this signal is monitored continuously and is used to obtain an end-to-end calibration from the receiving antenna to the ADC in the read-out electronics. The calibration method and first results will be presented. The engineering array is also fully integrated in the data acquisition of the Observatory and records air showers regularly. The first air showers detected simultaneously with the water-Cherenkov detectors and the Radio Detectors will be presented. Simulations of the detected showers, based on the reconstructed quantities, have been conducted with CORSIKA/CoREAS. A comparison of the measured radio signals with those predicted by simulations exhibits satisfying agreement.
Ključne besede: Pierre Auger Observatory, AugerPrime, indirect detection, radio detection, radio antenna array, surface detection, ground array, ultra-high energy, cosmic rays, galactic radio emission
Objavljeno v RUNG: 04.10.2023; Ogledov: 936; Prenosov: 6
.pdf Celotno besedilo (1,62 MB)
Gradivo ima več datotek! Več...

88.
Update on the large-scale cosmic-ray anisotropy search at the highest energies by the Telescope Array Experiment
T. Fujii, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The study of large-scale anisotropy at the highest energies is essential for understanding the transition from cosmic rays of galactic origin to those of extra-galactic origin, along with the magnetic fields in the galaxy and those beyond. Motivated by a significant detection of the large-scale anisotropy above 8 EeV by the Pierre Auger Observatory (Auger), we had previously reported, using 11 years of Telescope Array (TA) surface array data, a result compatible both with that of Auger, and with an isotropic source distribution [R. U. Abbasi et al., Astrophys. J. Lett. 898, L28 (2020)]. In this contribution, we will show the preliminary updated results using 12 years TA SD data to search for the large-scale anisotropy at the highest energies.
Ključne besede: Telescope Array, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, anisotropy, large-scale, dipole
Objavljeno v RUNG: 04.10.2023; Ogledov: 1013; Prenosov: 4
.pdf Celotno besedilo (1,95 MB)
Gradivo ima več datotek! Več...

89.
UHECR mass composition from anisotropy of their arrival directions with the Telescope Array SD
M. Kuznetsov, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: We propose a new method for the estimation of ultra-high energy cosmic ray (UHECR) mass composition from a distribution of their arrival directions. The method employs a test statistic (TS) based on a characteristic deflection of UHECR events with respect to the distribution of luminous matter in the local Universe modeled with a flux-weighed 2MRS catalog. Making realistic simulations of the mock UHECR sets, we show that this TS is robust to the presence of galactic and non-extreme extra-galactic magnetic fields and sensitive to the mass composition of events in a set. We apply the method to Telescope Array surface detector data for 11 years and derive new independent constraints on fraction of protons and iron in p-Fe mix at E>10 EeV. At 10100 EeV --- pure iron or even more massive composition. This result is in tension with Auger composition model inferred from spectrum-Xmax fit at 2.7σ (2.0σ) for PT'11 (JF'12) regular GMF model.
Ključne besede: Telescope Array, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, composition, anisotropy, magnetic fields, 2MRS
Objavljeno v RUNG: 04.10.2023; Ogledov: 1044; Prenosov: 5
.pdf Celotno besedilo (3,02 MB)
Gradivo ima več datotek! Več...

90.
Measurement of the Proton-Air Cross Section with Telescope Arrays Black Rock, Long Ridge, and Surface Array in Hybrid Mode.
R. Abbasi, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: Ultra High Energy Cosmic Ray (UHECR) detectors have been reporting on the proton-air cross section measurement beyond the capability of particle accelerators since 1984. The knowledge of this fundamental particle property is vital for our understanding of high energy particle interactions and could possibly hold the key to new physics. The data used in this work was collected over eight years using the hybrid events of Black Rock (BR) and Long Ridge (LR) fluorescence detectors as well as the Telescope Array Surface Detector (TASD). The proton-air cross section is determined at s√=73~TeV by fitting the exponential tail of the Xmax distribution of these events. The proton-air cross section is then inferred from the exponential tail fit and from the most updated high energy interaction models. σ^inel_p−air is observed to be 520.1±35.8 [Stat.] +25.3−42.9 [Sys.] mb. This is the second proton-air cross section work reported by the Telescope Array collaboration.
Ključne besede: Telescope Array, indirect detection, hybrid detection, ground array, fluorescence detection, ultra-high energy, cosmic rays, Xmax, proton-air cross-section, high energy particle interaction
Objavljeno v RUNG: 04.10.2023; Ogledov: 1066; Prenosov: 4
.pdf Celotno besedilo (1,47 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh