Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Development of Zinc Oxide-Multi-Walled Carbon Nanotube hybrid nanofluid for energy-efficient heat transfer application: A thermal lens study
Mohanachandran Nair Sindhu Swapna, 2021, izvirni znanstveni članek

Opis: This paper addresses the need for developing an energy-efficient hybrid nanofluid with zinc oxide–multi-walled carbon nanotube (ZnO-MWCNT) for overcoming the bottleneck of efficient heat transfer in thermal systems. The concentration-dependent thermal diffusivity modifications are analyzed using the highly sensitive mode mismatched thermal lens technique. The hybrid composite is prepared by the solid-state mixing and annealing of a pure multi-walled carbon nanotube (MWCNT) and zinc oxide (ZnO), synthesized by the solution combustion method. The composite formation is studied by structural, morphological, and optical characterization techniques. Among the three nanofluids ZnO, MWCNT, and ZnO-MWCNT, the composite exhibits a drastic enhancement in thermal diffusivity at a lower solid volume fraction of 0.047 mg/ml containing 0.009 mg/ml of MWCNT. All the nanofluids show an optimum concentration beyond which the thermal diffusivity decreases with the nanoparticle concentration. Thus, this study suggests the potential application of ZnO-MWCNT hybrid nanofluids in thermal system design to enhance internal combustion engines' efficiency during cold-start.
Ključne besede: Zinc Oxide, MWCNT, hybrid nanofluid, thermal lens, diffusivity, engine efficiency
Objavljeno v RUNG: 30.06.2022; Ogledov: 1274; Prenosov: 0
Gradivo ima več datotek! Več...

2.
Fractal and spectroscopic analysis of soot from internal combustion engines
Mohanachandran Nair Sindhu Swapna, SARITHA DEVI H V, RAJ VIMAL, Sankararaman S, 2018, izvirni znanstveni članek

Opis: Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applications in nanoelectronics and thereby pointing a potential use of these aged engines.
Ključne besede: Fractals, internal combustion engine, efficiency, soot, carbon nanoparticle
Objavljeno v RUNG: 30.06.2022; Ogledov: 1207; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.01 sek.
Na vrh