1. Constraints on upward-going air showers using the Pierre Auger Observatory dataEmanuele De Vito, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The fluorescence detector (FD) of the Pierre Auger Observatory is sensitive to upward-going air showers with energies above 1017 eV. Given its operation time and wide field of view, the FD has the potential to support or constrain the “anomalous” observations by the ANITA detector, interpreted as upward-going air showers that would be indicative of Beyond Standard Model (BSM) physics. To this end, a search for upward-going air showers with the FD has been performed applying selection criteria that were optimized using 10% of FD data. Dedicated background simulations (downward-going events) have been performed to estimate our capability to distinguish candidates from false positives. Also dedicated signal simulations (upward-going events) have been used to estimate our sensitivity to such showers with a focus on the energy region close to the ANITA observations.
Improved and updated results of the Pierre Auger Observatory exposure to upward-going showers will be presented after the unblinding of 14 years of FD data. Extensive simulations allow the FD exposure to be obtained at lower energies which are particularly relevant for the comparison with the ANITA results. A refinement of the method for signal discrimination and background rejection has also been applied. The implications are discussed under the assumption that the ANITA events were due to upward-going events. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, air showers, beyond standard model, fluorescence detectors, ANITA Objavljeno v RUNG: 23.01.2024; Ogledov: 1077; Prenosov: 8 Celotno besedilo (2,95 MB) Gradivo ima več datotek! Več... |
2. Measurements of cloud base height and coverage using elastic multiangle lidar scans at the Pierre Auger ObservatoryJuan Pallotta, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: Cloud features significantly affect the reconstruction of extensive air showers, and their characterization plays an important role in atmospheric monitoring. A multi-directional characterization of the cloud pattern is provided by a combination of several instruments of the atmospheric monitoring network at the Pierre Auger Observatory (Mendoza Province, Argentina). In this work, we present the results of an analysis of the cloud measurements using data taken from 2007 to 2022 by the elastic lidars positioned in the proximity of the fluorescence detector (FD) sites. These systems provide hourly measurements of cloud coverage and base height above FD. The ansatz
of horizontal homogeneity of cloud structures is tested by comparing the hourly measurements of cloud base height and coverage done simultaneously at different lidar locations. These results allow a detailed description of cloud patterns observed above the array throughout the whole period. The variation of cloud parameters is shown and quantitative conclusions about cloud homogeneity across the array of the Pierre Auger Observatory are given. Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, surface detectors, fluorescence detectors Objavljeno v RUNG: 23.01.2024; Ogledov: 1117; Prenosov: 7 Celotno besedilo (1,24 MB) Gradivo ima več datotek! Več... |
3. Investigating multiple ELVES and halos above strong lightning with the fluorescence detectors of the Pierre Auger ObservatoryRoberto Mussa, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: ELVES are being studied since 2013 with the twenty-four FD Telescopes of the Pierre Auger Observatory, in the province of Mendoza (Argentina), the world’s largest facility for the study of ultra-high energy cosmic rays. This study exploits a dedicated trigger and extended readout. Since December 2020, this trigger has been extended to the three High Elevation Auger Telescopes (HEAT), which observe the night sky at elevation angles between 30 and 60 degrees, allowing a study of ELVES from closer lightning. The high time resolution of the Auger telescopes allows us to upgrade reconstruction algorithms and to do detailed studies on multiple ELVES. The origin of multiple elves can be studied by analyzing the time difference and the amplitude ratio between flashes and comparing them with the properties of radio signals detected by the ENTLN lightning network since 2018. A fraction of multi-ELVES can also be interpreted as halos following ELVES. Halos are disc-shaped light transients emitted at 70-80 km altitudes, appearing at the center of the ELVES rings, due to the rearrangement of electric charges at the base of the ionosphere after a strong lightning event. Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, surface detectors, fluorescence detectors Objavljeno v RUNG: 23.01.2024; Ogledov: 1026; Prenosov: 6 Celotno besedilo (9,35 MB) Gradivo ima več datotek! Več... |
4. The dynamic range of the upgraded surfac-detector stations of AugerPrimeGioacchino Alex Anastasi, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The detection of ultra-high-energy cosmic rays by means of giant detector arrays is often limited by the saturation of the recorded signals near the impact point of the shower core at the ground, where
the particle density dramatically increases. The saturation affects in particular the highest energy events, worsening the systematic uncertainties in the reconstruction of the shower characteristics.
The upgrade of the Pierre Auger Observatory, called AugerPrime, includes the installation of an 1-inch Small PhotoMultiplier Tube (SPMT) inside each water-Cherenkov station (WCD) of the surface detector array. The SPMT allows an unambiguous measurement of signals down to about 250m from the shower core, thus reducing the number of events featuring a saturated station to a negligible level. In addition, a 3.8m2 plastic scintillator (Scintillator Surface Detector, SSD) is installed on top of each WCD. The SSD is designed to match the WCD (with SPMT) dynamic range, providing a complementary measurement of the shower components up to the highest energies. In this work, the design and performances of the upgraded AugerPrime surface detector stations in the extended dynamic range are described, highlighting the accuracy of the measurements. A first analysis employing the unsaturated signals in the event reconstruction is also presented. Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, fluorescence detectors, scintillator surface detectors Objavljeno v RUNG: 23.01.2024; Ogledov: 1180; Prenosov: 7 Celotno besedilo (616,96 KB) Gradivo ima več datotek! Več... |
5. A novel tool for the absolute end-to-end calibration of fluorescence telescopes : the XY-scannerChristoph Schäfer, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The Pierre Auger Observatory uses 27 large-aperture wide-angle Schmidt telescopes to measure the longitudinal profile of air showers using the air-fluorescence technique. Up to the year 2013, the absolute calibration of the telescopes was performed by mounting a uniform large-diameter light source on each of the telescopes and illuminating the entire aperture with a known photon flux. Due to the high amount of work and person-power required, this procedure was only carried out roughly once every three years, and a relative calibration was performed every night to track short-term changes. Since 2013, only the relative calibration has been performed. In this paper, we present a novel tool for the absolute end-to-end calibration of the fluorescence detectors, the XY-Scanner. The XY-Scanner uses a portable integrating sphere as a light source, which has been absolutely calibrated. This light source is installed onto a motorized rail system and moved across the aperture of each telescope. We mimic the illumination of the entire aperture by flashing the light source at ∼1700 positions evenly distributed across the telescope aperture. For the absolute calibration of the light source, we built a dedicated setup that uses a NIST-calibrated photodiode to measure the average photon flux and a PMT to track the pulse-to-pulse stability. We present the laboratory setups used to study the characteristics of the employed light sources and discuss
the inter-calibration between selected telescopes. Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, fluorescence detectors, longitudinal profile Objavljeno v RUNG: 23.01.2024; Ogledov: 1301; Prenosov: 7 Celotno besedilo (5,33 MB) Gradivo ima več datotek! Več... |
6. Depth of maximum of air-shower profiles : testing the compatibility of the measurements at the Pierre Auger Observatory and the Telescope ArrayA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The Pierre Auger Observatory (Auger) and the Telescope Array (TA), located, respectively, in the Southern and Northern hemispheres, are the largest ultra-high-energy cosmic ray (UHECR) observatories. The Auger and TA Collaborations have collected unprecedented statistics providing us with a unique opportunity to search for the differences between the UHECR energy spectra and mass compositions in the complementary sky regions. To correctly attribute such differences to
the properties of the UHECR sources or propagation, the systematic effects in the measurements of each observatory should be considered properly. In this context, the task of the Auger – TA mass composition working group is to identify possible differences of astrophysical origin in the measurements of the depth of the maximum of air-shower profiles, X_max, performed at both observatories using the fluorescence technique. Due to distinct approaches to event selection and analysis atAuger and TA, theworking group uses a specially designed method to transfer the Auger X_max distributions into the TA detector. To this end, dedicated air-shower and detector simulations for the TA Black Rock Mesa and Long Ridge fluorescence detector stations were performed with the Sibyll 2.3d hadronic interaction model. From the comparison of the first two moments and the shapes of X_max distributions for energies above 10^18.2 eV, no significant differences between the Auger and TA measurements were found. Ključne besede: Pierre Auger Observatory, Telescope Array, ultra-high energy cosmic rays, fluorescence detectors Objavljeno v RUNG: 22.01.2024; Ogledov: 1354; Prenosov: 6 Celotno besedilo (1,19 MB) Gradivo ima več datotek! Več... |
7. Operations of the Pierre Auger ObservatoryR. Caruso, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci Opis: The construction of the first stage of the Pierre Auger Observatory, designed for research of ultra-high energy cosmic rays, began in 2001 with a prototype system. The Observatory has been collecting data since early 2004 and was completed in 2008. The Observatory is situated at 1400 m above sea level near Malargüe, (Mendoza province) in western Argentina, covering a vast plain of 3000 squared km, known as the Pampa Amarillo. The Observatory consists of a hybrid detector, in which there are 1660 water-Cherenkov stations, forming the Surface Detector (SD) and 27 peripheral atmospheric fluorescence telescopes, comprising the Fluorescence Detector (FD). Over time, the Auger Observatory has been enhanced with different R&D prototypes and is recently being to an important upgrade called AugerPrime. In the present contribution, the general operations of the SD and FD will be described. In particular the FD shift procedure - executable locally in Malargüe or remotely by teams in control rooms abroad within the Collaboration - and the newly SD shifts (operating since 2019) will be explained. Additionally, the SD and FD maintenance campaigns, as well as the data taking and data handling at a basic level, will be reported Ključne besede: Pierre Auger Observatory, AugerPrime, indirect detection, fluorescence detectors, surface detectors, ultra-high energy, cosmic rays, detector operation Objavljeno v RUNG: 04.10.2023; Ogledov: 1660; Prenosov: 5 Celotno besedilo (6,83 MB) Gradivo ima več datotek! Več... |
8. New air fluorescence detectors employed in the Telescope Array experimentH. Tokuno, Jon Paul Lundquist, 2012, izvirni znanstveni članek Opis: Since 2007, the Telescope Array (TA) experiment, based in Utah, USA, has been observing ultra high energy cosmic rays to understand their origins. The experiment includes a surface detector (SD) array and three fluorescence detector (FD) stations. The FD stations, installed surrounding the SD array, measure the air fluorescence light emitted from extensive air showers (EASs) for precise determination of their energies and species. The detectors employed at one of the three FD stations were relocated from the High Resolution Fly's Eye (HiRes) experiment. At the other two stations, newly designed detectors were constructed for the TA experiment. An FD consists of a primary mirror and a camera equipped with photomultiplier tube pixels. To obtain the EAS parameters with high accuracy, understanding the FD optical characteristics is important. In this paper, we report the characteristics and installation of the new FDs and the performances of the FD components. The results of the monitored mirror reflectance during the observation time are also described in this report. Ključne besede: Ultra high energy cosmic rays, Extensive air showers, Air fluorescence light detectors Objavljeno v RUNG: 19.05.2020; Ogledov: 3114; Prenosov: 0 Gradivo ima več datotek! Več... |