Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
The conformational plasticity of the selectivity filter methionines controls the in-cell Cu(I) uptake through the CTR1 transporter
Pavel Janoš, Jana Aupič, Sharon Ruthstein , Alessandra Magistrato, 2022, izvirni znanstveni članek

Opis: Copper is a trace element vital to many cellular functions. Yet its abnormal levels are toxic to cells, provoking a variety of severe diseases. The high affinity copper transporter 1 (CTR1), being the main in-cell copper [Cu(I)] entry route, tightly regulates its cellular uptake via a still elusive mechanism. Here, all-atoms simulations unlock the molecular terms of Cu(I) transport in eukaryotes disclosing that the two methionine (Met) triads, forming the selectivity filter, play an unprecedented dual role both enabling selective Cu(I) transport and regulating its uptake rate thanks to an intimate coupling between the conformational plasticity of their bulky side chains and the number of bound Cu(I) ions. Namely, the Met residues act as a gate reducing the Cu(I) import rate when two ions simultaneously bind to CTR1. This may represent an elegant autoregulatory mechanism through which CTR1 protects the cells from excessively high, and hence toxic, in-cell Cu(I) levels. Overall, our outcomes resolve fundamental questions in CTR1 biology and open new windows of opportunity to tackle diseases associated with an imbalanced copper uptake.
Ključne besede: copper, membrane transporter, molecular dynamics, QM/MM, free energy
Objavljeno v RUNG: 15.09.2022; Ogledov: 1495; Prenosov: 0
Gradivo ima več datotek! Več...

2.
Chelating effect in short polymers for the design of bidentate binders of increased affinity and selectivity
Sara Fortuna, Federico Fogolari, Giacinto Scoles, 2015, izvirni znanstveni članek

Opis: The design of new strong and selective binders is a key step towards the development of new sensing devices and effective drugs. Both affinity and selectivity can be increased through chelation and here we theoretically explore the possibility of coupling two binders through a flexible linker. We prove the enhanced ability of double binders of keeping their target with a simple model where a polymer composed by hard spheres interacts with a spherical macromolecule, such as a protein, through two sticky spots. By Monte Carlo simulations and thermodynamic integration we show the chelating effect to hold for coupling polymers whose radius of gyration is comparable to size of the chelated particle. We show the binding free energy of flexible double binders to be higher than that of two single binders and to be maximized when the binding sites are at distances comparable to the mean free polymer end-to-end distance. The affinity of two coupled binders is therefore predicted to increase non linearly and in turn, by targeting two non-equivalent binding sites, this will lead to higher selectivity.
Ključne besede: chelation, polymer, multivalency, bidentate, free energy, thermodynamic integration, Monte Carlo
Objavljeno v RUNG: 11.10.2016; Ogledov: 4119; Prenosov: 152
.pdf Celotno besedilo (1,68 MB)

Iskanje izvedeno v 0.01 sek.
Na vrh