Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 10 / 31
Na začetekNa prejšnjo stran1234Na naslednjo stranNa konec
Polygroup objects in regular categories
Alessandro Linzi, 2024, izvirni znanstveni članek


We express the fundamental properties of commutative polygroups (also known as canonical hypergroups) in category-theoretic terms, over the category $ \mathbf{Set} $ formed by sets and functions. For this, we employ regularity as well as the monoidal structure induced on the category $ {\mathbf{Rel}} $ of sets and relations by cartesian products. We highlight how our approach can be generalised to any regular category. In addition, we consider the theory of partial multirings and find fully faithful functors between certain slice or coslice categories of the category of partial multirings and other categories formed by well-known mathematical structures and their morphisms.

Ključne besede: polygroup, canonical hypergroup, multiring, Krasner hyperring, regular category, relation
Objavljeno v RUNG: 25.03.2024; Ogledov: 374; Prenosov: 3
.pdf Celotno besedilo (504,37 KB)
Gradivo ima več datotek! Več...

New aspects in the theory of complete hypergroups
Irina Elena Cristea, 2023, objavljeni znanstveni prispevek na konferenci

Ključne besede: complete hypergroup, reversibility, period of an element regularity, reducibility, class equation, commutativity degree, Euler's totient function
Objavljeno v RUNG: 20.06.2023; Ogledov: 1065; Prenosov: 8
.pdf Celotno besedilo (230,09 KB)
Gradivo ima več datotek! Več...

On an algebraic description of projective geometries
Alessandro Linzi, predavanje na tuji univerzi

Ključne besede: Projective geometry, projective space, hypergroup
Objavljeno v RUNG: 06.06.2023; Ogledov: 1217; Prenosov: 0
Gradivo ima več datotek! Več...

New aspects in the theory of complete hypergroups
Irina Elena Cristea, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: hypergroup, complete part, reversibility, reducibility, class equation, commutativity degree
Objavljeno v RUNG: 08.03.2023; Ogledov: 1029; Prenosov: 13
.pdf Celotno besedilo (1,41 MB)

Eulerʹs totient function applied to complete hypergroups
Andromeda Cristina Sonea, Irina Elena Cristea, 2023, izvirni znanstveni članek

Ključne besede: Euler's totient function, complete hypergroups, period of an element, heart of a hypergroup
Objavljeno v RUNG: 19.01.2023; Ogledov: 1347; Prenosov: 3
.pdf Celotno besedilo (253,55 KB)
Gradivo ima več datotek! Več...

Semihypergroup-Based Graph for Modeling International Spread of COVID-n in Social Systems
Narjes Firouzkouhi, Reza Ameri, Abbas Amini, Hashem Bordbar, 2022, izvirni znanstveni članek

Opis: Graph theoretic techniques have been widely applied to model many types of links in social systems. Also, algebraic hypercompositional structure theory has demonstrated its systematic application in some problems. Influenced by these mathematical notions, a novel semihypergroup based graph (SBG) of G = hH, Ei is constructed through the fundamental relation gn on H, where semihypergroup H is appointed as the set of vertices and E is addressed as the set of edges on SBG. Indeed, two arbitrary vertices x and y are adjacent if xgny. The connectivity of graph G is characterized by xg y, whereby the connected components SBG of G would be exactly the elements of the fundamental group H/g . Based on SBG, some fundamental characteristics of the graph such as complete, regular, Eulerian, isomorphism, and Cartesian products are discussed along with illustrative examples to clarify the relevance between semihypergroup H and its corresponding graph. Furthermore, the notions of geometric space, block, polygonal, and connected components are introduced in terms of the developed SBG. To formulate the links among individuals/countries in the wake of the COVID (coronavirus disease) pandemic, a theoretical SBG methodology is presented to analyze and simplify such social systems. Finally, the developed SBG is used to model the trend diffusion of the viral disease COVID-n in social systems (i.e., countries and individuals).
Ključne besede: graph theory, hypergroup, fundamental relation, social systems, geometric space
Objavljeno v RUNG: 23.11.2022; Ogledov: 1072; Prenosov: 0
Gradivo ima več datotek! Več...

Divisible hypermodules
Hashem Bordbar, Irina Elena Cristea, 2022, izvirni znanstveni članek

Ključne besede: normal injective hypermodule, zero divisor, divisible hypermodule, canonical hypergroup
Objavljeno v RUNG: 11.02.2022; Ogledov: 1870; Prenosov: 34
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.05 sek.
Na vrh