1. Beyond surface area : enhanced pseudocapacitive properties of cobalt layered double hydroxide through structural modificationsAnja Siher, Ksenija Maver, Uroš Luin, Albin Pintar, Iztok Arčon, Andraž Mavrič, 2025, izvirni znanstveni članek Opis: Cobalt hydroxide and other first-row transition metal hydroxides have gained significant attention as pseudocapacitor materials due to their rapid and reversible redox processes. Their layered structures facilitate interactions between electrolyte anions and cobalt cation sites within the bulk of the material, enabling higher charge density and extending redox activity beyond the particle surface. By controlled precipitation under hydrothermal conditions, the structure and morphology of cobalt hydroxides can be optimized to enhance electrochemical performance. Challenging conventional assumptions, surface area alone is not the primary factor driving increased pseudocapacitive performance. The hexagonal hydrotalcite-like structure, characterized by lower skeletal density and larger basal plane spacing, outperforms the monoclinic cobalt carbonate hydroxide structure, achieving an order of magnitude higher capacitance. In situ X-ray absorption spectroscopy provides critical insights into the pseudocapacitive behavior, revealing enhanced accessibility of Co2+ sites for electrochemical oxidation. While monoclinic cobalt carbonate hydroxide exhibits minimal changes in the Co2+ oxidation state, indicative of surface-limited redox activity, the hydrotalcite-like cobalt hydroxides show substantial shifts in the Co K-edge position, highlighting oxidation of Co2+ sites throughout the bulk. Ključne besede: pseudocapacitors, layered-double hydroxides, cobalt hydroxide, redox processes, in situ x-ray absorption spectroscopy Objavljeno v RUNG: 14.03.2025; Ogledov: 505; Prenosov: 6
Celotno besedilo (1,48 MB) Gradivo ima več datotek! Več... |
2. Light-Assisted Catalysis and the Dynamic Nature of Surface Species in the Reverse Water Gas Shift Reaction over Cu/γ-Al2O3Kristijan Lorber, Iztok Arčon, Matej Huš, Janez Zavašnik, Jordi Sancho-Parramon, Anže Prašnikar, Blaž Likozar, Nataša Novak Tušar, Petar Djinović, izvirni znanstveni članek Opis: The reverse water gas shift (RWGS) reaction converts CO2 and H2 into CO and water. We investigated Cu/γ-Al2O3 catalysts in both thermally driven and light-assisted RWGS reactions using visible light. When driven by combined visible light and thermal energy, the CO2 conversion rates were lower than in the dark. Light-assisted reactions showed an increase in the apparent activation energy from 68 to 87 kJ/mol, indicating that light disrupts the energetically favorable pathway active in the dark. A linear correlation between irradiance and decreasing reaction rate suggests a photon-driven phenomenon. In situ diffuse reflectance infrared Fourier transform spectroscopy and TD-DFT analyses revealed that catalyst illumination causes significant, partly irreversible surface dehydroxylation, highlighting the importance of OH groups in the most favorable RWGS pathway. This study offers a novel approach to manipulate surface species and control activity in the RWGS reaction. Ključne besede: light-assisted catalysis, reaction mechanism, in situ spectroscopy, hydroxyl, copper, RWGS Objavljeno v RUNG: 07.01.2025; Ogledov: 647; Prenosov: 6
Celotno besedilo (5,73 MB) Gradivo ima več datotek! Več... |
3. Structure and population of complex ionic species in FeCl[sub]2 aqueous solution by X-ray absorption spectroscopyUroš Luin, Iztok Arčon, Matjaž Valant, 2022, izvirni znanstveni članek Opis: Technologies for mass production require cheap and abundant materials such as ferrous chloride (FeCl2). The literature survey shows the lack of experimental studies to validate theoretical conclusions related to the population of ionic Fe-species in the aqueous FeCl2 solution. Here, we present an in situ X-ray absorption study of the structure of the ionic species in the FeCl2 aqueous solution at different concentrations (1–4 molL−1) and temperatures (25–80 ◦C). We found that at low temperature and low FeCl2 concentration, the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33 (±0.02) Å and five water molecules at a distance of 2.095 (±0.005) Å. The structure of the ionic complex gradually changes with an increase in temperature and/or concentration. The apical water molecule is substituted by a chlorine ion to yield a neutral Fe[Cl2(H2O)4]0. The observed substitutional mechanism is facilitated by the presence of the intramolecular hydrogen bonds as well as entropic reasons. The transition from the single charged Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well correlates with the existing conductivity models. Ključne besede: structure, population, ionic species, aqueous ferrous chloride, in situ X-ray absorption spectroscopy Objavljeno v RUNG: 24.01.2022; Ogledov: 3215; Prenosov: 44 (1 glas)
Povezava na celotno besedilo Gradivo ima več datotek! Več... |
4. X-ray absorption spectroscopy analysis: in situ, operando, in vivoIztok Arčon, 2020, objavljeni povzetek znanstvenega prispevka na konferenci (vabljeno predavanje) Opis: X-ray absorption spectroscopy (XAS) is a powerful tool for characterisation of local structure and chemical state of selected elements in different new functional materials and biological or environmental samples. The XAS spectroscopy is based on extremely bright synchrotron radiation X-rays sources, which allow precise characterisation of bulk, nanostructured or highly diluted samples. With its two methods (XANES and EXAFS) it enables monitoring changes in valence states and local structures of constituent elements during chemical reactions under controlled reaction conditions, and it offers a possibility of a combination of X-ray spectroscopy and microscopy with sub-micron lateral resolution, crucial for analysis of biological samples on sub-cellular level. In this talk some typical examples of advanced XAS analysis will be presented. Ključne besede: X-ray absorption spectroscopy, EXAFS, XANES, in-situ, operando Objavljeno v RUNG: 17.10.2020; Ogledov: 6547; Prenosov: 0 Gradivo ima več datotek! Več... |