Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Least-square fit
Aleksander Đorđević, 2021, raz. nal. na višji ali visoki šoli

Najdeno v: ključnih besedah
Ključne besede: least-square fit, non-linear regression, Levenberg-Marquardt algorithm
Objavljeno: 28.06.2021; Ogledov: 1464; Prenosov: 0
.pdf Polno besedilo (469,84 KB)

2.
L (D, 2, 1)-labeling of Square Grid
Priya Ranjan Sinha Mahapatra, Soumen Atta, 2019, izvirni znanstveni članek

Opis: For a fixed integer $D (\geq 3)$ and $\lambda$ $\in$ $\mathbb{Z}^+$, a $\lambda$-$L(D, 2, 1)$-$labeling$ of a graph $G = (V, E)$ is the problem of assigning non-negative integers (known as labels) from the set $\{0, \ldots, \lambda\}$ to the vertices of $G$ such that if any two vertices in $V$ are one, two and three distance apart from each other then the assigned labels to these vertices must have a difference of at least $D$, 2 and 1 respectively. The vertices which are at least $4$ distance apart can receive the same label. The minimum value among all the possible values of $\lambda$ for which there exists a $\lambda$-$L(D, 2, 1)$-$labeling$ is known as the labeling number. In this paper $\lambda$-$L(D, 2 ,1)$-$labeling$ of square grid is considered. The lower bound on the labeling number for square grid is presented and a formula for $\lambda$-$L(D, 2 ,1)$-$labeling$ of square grid is proposed. The correctness proof of the proposed formula is given here. The upper bound of the labeling number obtained from the proposed labeling formula for square grid matches exactly with the lower bound of the labeling number.
Najdeno v: ključnih besedah
Ključne besede: Graph labeling, Square grid, Labeling number, Frequency assignment problem (FAP)
Objavljeno: 17.04.2023; Ogledov: 91; Prenosov: 0
.pdf Polno besedilo (304,64 KB)

3.
No-hole λ-L (k, k – 1, …, 2,1)-labeling for square grid
Priya Ranjan Sinha Mahapatra, Stanisław Goldstein, Soumen Atta, 2017, izvirni znanstveni članek

Opis: Motivated by a frequency assignment problem, we demonstrate, for a fixed positive integer k, how to label an infinite square grid with a possibly small number of integer labels, ranging from 0 to λ −1, in such a way that labels of adjacent vertices differ by at least k, vertices connected by a path of length two receive values which differ by at least k − 1, and so on. The vertices which are at least k + 1 distance apart may receive the same label. By finding a lower bound for λ, we prove that the solution is close to optimal, with approximation ratio at most 9/8. The labeling presented is a no-hole one, i.e., it uses each of the allowed labels at least once.
Najdeno v: ključnih besedah
Ključne besede: graph labeling, labeling number, no-hole labeling, square grid, frequency assignment problem, approximation ratio
Objavljeno: 17.04.2023; Ogledov: 102; Prenosov: 0
.pdf Polno besedilo (176,29 KB)

Iskanje izvedeno v 0 sek.
Na vrh